{"title":"210 Gb/s 的亚伏特正向偏压硅微波调制器。","authors":"David W U Chan, Hon Ki Tsang","doi":"10.1364/OL.535202","DOIUrl":null,"url":null,"abstract":"<p><p>Low-voltage and efficient optical modulators in the silicon photonic (SiPh) platform are highly desired for realizing high-speed connectivity in chip level interconnects, data center interconnects, and high-performance computing (HPC). With the modulator operating at CMOS compatible voltages, high-voltage modulator drivers are no longer needed, thus reducing driver design complexity and power consumption. We demonstrate a silicon microring modulator (MRM) operating at a driving voltage of 0.8 V<sub>pp.</sub> We achieve high modulation efficiency by using a small forward bias of 0.2 V: the forward bias voltage allows the modulator to have an enhanced optical modulation amplitude (OMA) by operating near injection mode, modulating 180 Gb/s (180 Gbaud) non-return-to-zero (NRZ) and 210 Gb/s (105 Gbaud) 4-level pulse amplitude modulation (PAM-4) free of electrical or optical amplification. We also demonstrate the operation at zero bias and achieve up to 200 Gb/s. Error-free operation was observed at 130 Gb/s (NRZ). The absence of an external biasing voltage can further improve energy efficiency and simplifies device integration.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6477-6480"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-volt forward-biased silicon microring modulator at 210 Gb/s.\",\"authors\":\"David W U Chan, Hon Ki Tsang\",\"doi\":\"10.1364/OL.535202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-voltage and efficient optical modulators in the silicon photonic (SiPh) platform are highly desired for realizing high-speed connectivity in chip level interconnects, data center interconnects, and high-performance computing (HPC). With the modulator operating at CMOS compatible voltages, high-voltage modulator drivers are no longer needed, thus reducing driver design complexity and power consumption. We demonstrate a silicon microring modulator (MRM) operating at a driving voltage of 0.8 V<sub>pp.</sub> We achieve high modulation efficiency by using a small forward bias of 0.2 V: the forward bias voltage allows the modulator to have an enhanced optical modulation amplitude (OMA) by operating near injection mode, modulating 180 Gb/s (180 Gbaud) non-return-to-zero (NRZ) and 210 Gb/s (105 Gbaud) 4-level pulse amplitude modulation (PAM-4) free of electrical or optical amplification. We also demonstrate the operation at zero bias and achieve up to 200 Gb/s. Error-free operation was observed at 130 Gb/s (NRZ). The absence of an external biasing voltage can further improve energy efficiency and simplifies device integration.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 22\",\"pages\":\"6477-6480\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.535202\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.535202","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Sub-volt forward-biased silicon microring modulator at 210 Gb/s.
Low-voltage and efficient optical modulators in the silicon photonic (SiPh) platform are highly desired for realizing high-speed connectivity in chip level interconnects, data center interconnects, and high-performance computing (HPC). With the modulator operating at CMOS compatible voltages, high-voltage modulator drivers are no longer needed, thus reducing driver design complexity and power consumption. We demonstrate a silicon microring modulator (MRM) operating at a driving voltage of 0.8 Vpp. We achieve high modulation efficiency by using a small forward bias of 0.2 V: the forward bias voltage allows the modulator to have an enhanced optical modulation amplitude (OMA) by operating near injection mode, modulating 180 Gb/s (180 Gbaud) non-return-to-zero (NRZ) and 210 Gb/s (105 Gbaud) 4-level pulse amplitude modulation (PAM-4) free of electrical or optical amplification. We also demonstrate the operation at zero bias and achieve up to 200 Gb/s. Error-free operation was observed at 130 Gb/s (NRZ). The absence of an external biasing voltage can further improve energy efficiency and simplifies device integration.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.