乳品生产的净零排放之路:是否可以实现肠道甲烷的明显减少?

IF 8.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Annual Review of Animal Biosciences Pub Date : 2024-11-15 DOI:10.1146/annurev-animal-010324-113703
Karen A Beauchemin, Ermias Kebreab, Michelle Cain, Michael J VandeHaar
{"title":"乳品生产的净零排放之路:是否可以实现肠道甲烷的明显减少?","authors":"Karen A Beauchemin, Ermias Kebreab, Michelle Cain, Michael J VandeHaar","doi":"10.1146/annurev-animal-010324-113703","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH<sub>4</sub>) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend will continue only if cows are bred for increased efficiency. Genetic selection of low-CH<sub>4</sub>-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH<sub>4</sub> mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH<sub>4</sub> emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Path to Net-Zero in Dairy Production: Are Pronounced Decreases in Enteric Methane Achievable?\",\"authors\":\"Karen A Beauchemin, Ermias Kebreab, Michelle Cain, Michael J VandeHaar\",\"doi\":\"10.1146/annurev-animal-010324-113703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH<sub>4</sub>) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend will continue only if cows are bred for increased efficiency. Genetic selection of low-CH<sub>4</sub>-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH<sub>4</sub> mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH<sub>4</sub> emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.</p>\",\"PeriodicalId\":48953,\"journal\":{\"name\":\"Annual Review of Animal Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Animal Biosciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-animal-010324-113703\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-010324-113703","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

要实现乳制品生产的温室气体(GHG)净零排放,需要将肠道甲烷(CH4)排放量减少 50%以上,同时消除饲料生产过程中的排放,增加碳固存,减少粪便排放,对粪便进行厌氧消化,并减少对化石燃料能源的依赖。过去几十年来,生产效率的提高降低了美国牛奶生产的温室气体强度(即单位牛奶的排放量),但只有在奶牛饲养效率提高的情况下,这一趋势才会持续下去。对低 CH4 产出动物进行基因选择、重新配置日粮、使用饲料添加剂和接种疫苗等措施都显示出减少肠道 CH4 排放的巨大潜力;但是,目前可用的减排策略很少,而且在不增加收入的情况下增加成本是实施的主要障碍。在不对牛奶生产造成负面影响的情况下,不可能完全消除乳业的 CH4 排放;因此,需要抵消和清除其他温室气体,以实现牛奶生产的净零排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Path to Net-Zero in Dairy Production: Are Pronounced Decreases in Enteric Methane Achievable?

Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH4) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend will continue only if cows are bred for increased efficiency. Genetic selection of low-CH4-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH4 mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH4 emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Animal Biosciences
Annual Review of Animal Biosciences BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ZOOLOGY
CiteScore
21.30
自引率
0.80%
发文量
31
期刊介绍: The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.
期刊最新文献
The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. A One Health Approach to Reducing Livestock Disease Prevalence in Developing Countries: Advances, Challenges, and Prospects. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology. Convergent Evolution of Pregnancy in Vertebrates. Molecular Innovations Shaping Beak Morphology in Birds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1