针对胶质母细胞瘤的创新给药策略:克服肿瘤微环境的挑战。

Sidra Khot, Anandha Krishnaveni, Sankalp Gharat, Munira Momin, Chintan Bhavsar, Abdelwahab Omri
{"title":"针对胶质母细胞瘤的创新给药策略:克服肿瘤微环境的挑战。","authors":"Sidra Khot, Anandha Krishnaveni, Sankalp Gharat, Munira Momin, Chintan Bhavsar, Abdelwahab Omri","doi":"10.1080/17425247.2024.2429702","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>- Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM.</p><p><strong>Areas covered: </strong>- This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles.</p><p><strong>Expert opinion: </strong>- The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment.\",\"authors\":\"Sidra Khot, Anandha Krishnaveni, Sankalp Gharat, Munira Momin, Chintan Bhavsar, Abdelwahab Omri\",\"doi\":\"10.1080/17425247.2024.2429702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>- Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM.</p><p><strong>Areas covered: </strong>- This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles.</p><p><strong>Expert opinion: </strong>- The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2024.2429702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2024.2429702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:- 多形性胶质母细胞瘤(GBM)具有高度侵袭性的肿瘤微环境(TME),因此在治疗管理方面具有挑战性。这种复杂的肿瘤微环境以缺氧、营养匮乏、免疫抑制、基质屏障、间质压力增高和血脑屏障(BBB)的存在为特征,经常影响有希望的治疗策略的疗效。因此,深入了解 TME 并开发创新方法以克服其相关挑战,对于改善 GBM 的治疗效果至关重要。详细探讨了旨在解决这些障碍的新方法,包括先进的制剂策略和精确的靶向机制。专家观点:- 这些创新方法的整合为提高 GBM 疗法的特异性和疗效提供了一条大有可为的途径。通过结合这些先进的策略,GBM 治疗中改善患者预后的潜力将得到显著提升,为克服 TME 带来的限制带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment.

Introduction: - Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM.

Areas covered: - This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles.

Expert opinion: - The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An opinion on advanced cancer immunotherapy through innovations in PD-1 inhibitor delivery systems. Acceptability of Cyltezo pen among biologics autoinjector patients, autoinjector naïve patients, and healthcare professionals. The potential of nanosystems in disrupting adenosine signaling pathways for tumor immunotherapy. How can nanoemulsions be used for photosensitizer drug delivery? Advanced drug delivery strategies for diabetic retinopathy: a comprehensive review on current medications, delivery methods, device innovations, overcoming barriers, and experimental models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1