Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt
{"title":"利用 1DZnO 光学纳米生物传感器进行实时纳米级细菌检测","authors":"Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt","doi":"10.1002/anbr.202400013","DOIUrl":null,"url":null,"abstract":"<p>One-dimensional zinc oxide nanomaterials (1DZnO) have emerged as promising, cost-effective nanoplatforms with adjustable properties suitable for electrochemical and optical biosensing applications. In this work, modifications in the inherent photoluminescent response of 1DZnO are harnessed to develop a novel immunosensor tailored for detecting enteropathogenic <i>Escherichia coli</i>. This nanobiosensor demonstrates a modulation in photoluminescence signal, effectively responsive to analyte concentrations ranging from 1 × 10<sup>2</sup> to 1 × 10<sup>8</sup> CFU mL<sup>−1</sup>, with direct visualization of targeted bacterial cells over 1DZnO structures through scanning electron microscopy. The conceptualization of this nanobiosensor is focused on a real-time contact strategy that can significantly reduce processing and response times for pathogen detection, prospected for emergency scenarios. With this aim, the detection process unfolds in real time, with a mere 5–10 s interaction time, corroborated by the standard polymerase chain reaction approach. This synergistic validation underscores the reliability and precision of the developed biosensor. Notably, the utility of 1DZnO nanoplatforms extends beyond the realm of enteropathogenic <i>E. coli</i>, as the biosensing performance exhibited here holds promise for analogous applications involving other medically pertinent pathogens. This study paves the way for the broader implementation of 1DZnO-based biosensors in medical diagnostics, offering rapid, sensitive, and real-time detection capabilities.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400013","citationCount":"0","resultStr":"{\"title\":\"Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor\",\"authors\":\"Rafael A. Salinas, Shirlley E. Martínez Tolibia, Andrés Galdámez-Martínez, Josué E. Romero, Laura J. García-Barrera, Abdú Orduña, Carlos David Ramos, Guillermo Santana Rodríguez, Ateet Dutt\",\"doi\":\"10.1002/anbr.202400013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One-dimensional zinc oxide nanomaterials (1DZnO) have emerged as promising, cost-effective nanoplatforms with adjustable properties suitable for electrochemical and optical biosensing applications. In this work, modifications in the inherent photoluminescent response of 1DZnO are harnessed to develop a novel immunosensor tailored for detecting enteropathogenic <i>Escherichia coli</i>. This nanobiosensor demonstrates a modulation in photoluminescence signal, effectively responsive to analyte concentrations ranging from 1 × 10<sup>2</sup> to 1 × 10<sup>8</sup> CFU mL<sup>−1</sup>, with direct visualization of targeted bacterial cells over 1DZnO structures through scanning electron microscopy. The conceptualization of this nanobiosensor is focused on a real-time contact strategy that can significantly reduce processing and response times for pathogen detection, prospected for emergency scenarios. With this aim, the detection process unfolds in real time, with a mere 5–10 s interaction time, corroborated by the standard polymerase chain reaction approach. This synergistic validation underscores the reliability and precision of the developed biosensor. Notably, the utility of 1DZnO nanoplatforms extends beyond the realm of enteropathogenic <i>E. coli</i>, as the biosensing performance exhibited here holds promise for analogous applications involving other medically pertinent pathogens. This study paves the way for the broader implementation of 1DZnO-based biosensors in medical diagnostics, offering rapid, sensitive, and real-time detection capabilities.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor
One-dimensional zinc oxide nanomaterials (1DZnO) have emerged as promising, cost-effective nanoplatforms with adjustable properties suitable for electrochemical and optical biosensing applications. In this work, modifications in the inherent photoluminescent response of 1DZnO are harnessed to develop a novel immunosensor tailored for detecting enteropathogenic Escherichia coli. This nanobiosensor demonstrates a modulation in photoluminescence signal, effectively responsive to analyte concentrations ranging from 1 × 102 to 1 × 108 CFU mL−1, with direct visualization of targeted bacterial cells over 1DZnO structures through scanning electron microscopy. The conceptualization of this nanobiosensor is focused on a real-time contact strategy that can significantly reduce processing and response times for pathogen detection, prospected for emergency scenarios. With this aim, the detection process unfolds in real time, with a mere 5–10 s interaction time, corroborated by the standard polymerase chain reaction approach. This synergistic validation underscores the reliability and precision of the developed biosensor. Notably, the utility of 1DZnO nanoplatforms extends beyond the realm of enteropathogenic E. coli, as the biosensing performance exhibited here holds promise for analogous applications involving other medically pertinent pathogens. This study paves the way for the broader implementation of 1DZnO-based biosensors in medical diagnostics, offering rapid, sensitive, and real-time detection capabilities.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.