利用可见光牛津空间环境测角仪测量阿波罗岩石样本的双向反射率分布函数

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Meteoritics & Planetary Science Pub Date : 2024-09-10 DOI:10.1111/maps.14266
R. J. Curtis, T. J. Warren, K. A. Shirley, D. A. Paige, N. E. Bowles
{"title":"利用可见光牛津空间环境测角仪测量阿波罗岩石样本的双向反射率分布函数","authors":"R. J. Curtis,&nbsp;T. J. Warren,&nbsp;K. A. Shirley,&nbsp;D. A. Paige,&nbsp;N. E. Bowles","doi":"10.1111/maps.14266","DOIUrl":null,"url":null,"abstract":"<p>A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution functions (BRDFs) of two representative Apollo regolith samples were measured, for two surface roughness profiles, across a range of viewing angles—reflectance: 0–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 45°, 90°, 135°, and 180°. The BRDF datasets were fitted using the Hapke BRDF model to (1) provide a method of comparison to other photometric studies of the lunar regolith and (2) to produce Hapke parameter values which can be used to extrapolate the BRDF to all angles. Importantly, the surface profiles of the samples were characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model, φ and <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math>, which represent porosity and surface roughness, respectively, to be constrained. The study determined that, for <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math>, the 500–1000 μm size-scale is the most relevant for the BRDF. Thus, it deduced the following “best fit” Hapke parameters for each of the samples: Apollo 11 rough—<span></span><math>\n <mrow>\n <mi>w</mi>\n </mrow></math> = 0.315 ± 0.021, <span></span><math>\n <mrow>\n <mi>b</mi>\n </mrow></math> = 0.261 ± 0.007, and <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>S</mi>\n </msub>\n </mrow></math> = 0.039 ± 0.005 (with <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math> = 21.28° and φ = 0.41 ± 0.02); Apollo 11 smooth—<span></span><math>\n <mrow>\n <mi>w</mi>\n </mrow></math> = 0.281 ± 0.028, <span></span><math>\n <mrow>\n <mi>b</mi>\n </mrow></math> = 0.238 ± 0.008, and <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>S</mi>\n </msub>\n </mrow></math> = 0.032 ± 0.006 (with <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math> = 13.80° and φ = 0.60 ± 0.02); Apollo 16 rough—<span></span><math>\n <mrow>\n <mi>w</mi>\n </mrow></math> = 0.485 ± 0.155, <span></span><math>\n <mrow>\n <mi>b</mi>\n </mrow></math> = 0.155 ± 0.083, and <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>S</mi>\n </msub>\n </mrow></math> = 0.135 ± 0.007 (with <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math> = 21.69° and φ = 0.55 ± 0.02); Apollo 16 smooth—<span></span><math>\n <mrow>\n <mi>w</mi>\n </mrow></math> = 0.388 ± 0.057, <span></span><math>\n <mrow>\n <mi>b</mi>\n </mrow></math> = 0.063 ± 0.033, and <span></span><math>\n <mrow>\n <msub>\n <mi>h</mi>\n <mi>S</mi>\n </msub>\n </mrow></math> = 0.221 ± 0.011 (with <span></span><math>\n <mrow>\n <mover>\n <mi>θ</mi>\n <mo>¯</mo>\n </mover>\n </mrow></math> = 14.27° and φ = 0.40 ± 0.02). Finally, updated hemispheric albedo functions were determined for the samples, which can be used to set laboratory measured visible scattering functions within thermal models.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 11","pages":"3111-3123"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14266","citationCount":"0","resultStr":"{\"title\":\"Bidirectional reflectance distribution function measurements of characterized Apollo regolith samples using the visible oxford space environment goniometer\",\"authors\":\"R. J. Curtis,&nbsp;T. J. Warren,&nbsp;K. A. Shirley,&nbsp;D. A. Paige,&nbsp;N. E. Bowles\",\"doi\":\"10.1111/maps.14266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution functions (BRDFs) of two representative Apollo regolith samples were measured, for two surface roughness profiles, across a range of viewing angles—reflectance: 0–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 45°, 90°, 135°, and 180°. The BRDF datasets were fitted using the Hapke BRDF model to (1) provide a method of comparison to other photometric studies of the lunar regolith and (2) to produce Hapke parameter values which can be used to extrapolate the BRDF to all angles. Importantly, the surface profiles of the samples were characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model, φ and <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math>, which represent porosity and surface roughness, respectively, to be constrained. The study determined that, for <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math>, the 500–1000 μm size-scale is the most relevant for the BRDF. Thus, it deduced the following “best fit” Hapke parameters for each of the samples: Apollo 11 rough—<span></span><math>\\n <mrow>\\n <mi>w</mi>\\n </mrow></math> = 0.315 ± 0.021, <span></span><math>\\n <mrow>\\n <mi>b</mi>\\n </mrow></math> = 0.261 ± 0.007, and <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>S</mi>\\n </msub>\\n </mrow></math> = 0.039 ± 0.005 (with <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math> = 21.28° and φ = 0.41 ± 0.02); Apollo 11 smooth—<span></span><math>\\n <mrow>\\n <mi>w</mi>\\n </mrow></math> = 0.281 ± 0.028, <span></span><math>\\n <mrow>\\n <mi>b</mi>\\n </mrow></math> = 0.238 ± 0.008, and <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>S</mi>\\n </msub>\\n </mrow></math> = 0.032 ± 0.006 (with <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math> = 13.80° and φ = 0.60 ± 0.02); Apollo 16 rough—<span></span><math>\\n <mrow>\\n <mi>w</mi>\\n </mrow></math> = 0.485 ± 0.155, <span></span><math>\\n <mrow>\\n <mi>b</mi>\\n </mrow></math> = 0.155 ± 0.083, and <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>S</mi>\\n </msub>\\n </mrow></math> = 0.135 ± 0.007 (with <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math> = 21.69° and φ = 0.55 ± 0.02); Apollo 16 smooth—<span></span><math>\\n <mrow>\\n <mi>w</mi>\\n </mrow></math> = 0.388 ± 0.057, <span></span><math>\\n <mrow>\\n <mi>b</mi>\\n </mrow></math> = 0.063 ± 0.033, and <span></span><math>\\n <mrow>\\n <msub>\\n <mi>h</mi>\\n <mi>S</mi>\\n </msub>\\n </mrow></math> = 0.221 ± 0.011 (with <span></span><math>\\n <mrow>\\n <mover>\\n <mi>θ</mi>\\n <mo>¯</mo>\\n </mover>\\n </mrow></math> = 14.27° and φ = 0.40 ± 0.02). Finally, updated hemispheric albedo functions were determined for the samples, which can be used to set laboratory measured visible scattering functions within thermal models.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 11\",\"pages\":\"3111-3123\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14266\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14266\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14266","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用可见光牛津空间环境测角仪进行了一项实验室研究,测量了两个具有代表性的阿波罗岩石样本的宽带(350-1250 nm)双向反射率分布函数(BRDF):反射率:0-70°,以 5°为单位;入射角:15°、30°、45°:入射角:15°、30°、45°和 60°;方位角:0°、45°、90°、135°和 180°。BRDF 数据集使用 Hapke BRDF 模型进行拟合,以便:(1)提供与其他月球碎屑光度研究进行比较的方法;(2)生成 Hapke 参数值,用于将 BRDF 推断到所有角度。重要的是,利用 Alicona 3D® 仪器对样品的表面轮廓进行了表征,从而对 Hapke 模型中的两个自由参数φ 和θ¯(分别代表孔隙度和表面粗糙度)进行了约束。研究确定,对于 θ ¯ 而言,500-1000 μm 尺寸尺度与 BRDF 最为相关。因此,它为每个样本推导出了以下 "最佳拟合 "的哈普克参数:阿波罗 11 号粗糙样 w = 0.315 ± 0.021,b = 0.261 ± 0.007,h S = 0.039 ± 0.005(θ ¯ = 21.28°,φ = 0.41 ± 0.02);阿波罗 11 号光滑样 w = 0.281 ± 0.028,b = 0.238 ± 0.008,h S = 0.032 ± 0.006(θ ¯ = 13.80°,φ = 0.60 ± 0.02);阿波罗 16 号粗糙样 w = 0.315 ± 0.021,b = 0.261 ± 0.007,h S = 0.039 ± 0.005(θ ¯ = 21.28°,φ = 0.41 ± 0.02)。02);阿波罗 16 号粗糙度- w = 0.485 ± 0.155,b = 0.155 ± 0.083,h S = 0.135 ± 0.007(θ ¯ = 21.69°,φ = 0.55 ± 0.02);阿波罗 16 号光滑-- w = 0.388 ± 0.057,b = 0.063 ± 0.033,h S = 0.221 ± 0.011(θ ¯ = 14.27°,φ = 0.40 ± 0.02)。最后,确定了样本的最新半球反照率函数,可用于在热模型中设置实验室测量的可见光散射函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bidirectional reflectance distribution function measurements of characterized Apollo regolith samples using the visible oxford space environment goniometer

A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution functions (BRDFs) of two representative Apollo regolith samples were measured, for two surface roughness profiles, across a range of viewing angles—reflectance: 0–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 45°, 90°, 135°, and 180°. The BRDF datasets were fitted using the Hapke BRDF model to (1) provide a method of comparison to other photometric studies of the lunar regolith and (2) to produce Hapke parameter values which can be used to extrapolate the BRDF to all angles. Importantly, the surface profiles of the samples were characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model, φ and θ ¯ , which represent porosity and surface roughness, respectively, to be constrained. The study determined that, for θ ¯ , the 500–1000 μm size-scale is the most relevant for the BRDF. Thus, it deduced the following “best fit” Hapke parameters for each of the samples: Apollo 11 rough— w  = 0.315 ± 0.021, b  = 0.261 ± 0.007, and h S  = 0.039 ± 0.005 (with θ ¯  = 21.28° and φ = 0.41 ± 0.02); Apollo 11 smooth— w  = 0.281 ± 0.028, b  = 0.238 ± 0.008, and h S  = 0.032 ± 0.006 (with θ ¯  = 13.80° and φ = 0.60 ± 0.02); Apollo 16 rough— w  = 0.485 ± 0.155, b  = 0.155 ± 0.083, and h S  = 0.135 ± 0.007 (with θ ¯  = 21.69° and φ = 0.55 ± 0.02); Apollo 16 smooth— w  = 0.388 ± 0.057, b  = 0.063 ± 0.033, and h S  = 0.221 ± 0.011 (with θ ¯  = 14.27° and φ = 0.40 ± 0.02). Finally, updated hemispheric albedo functions were determined for the samples, which can be used to set laboratory measured visible scattering functions within thermal models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
期刊最新文献
Issue Information Cover 2004 Barringer Medal for Peter Schultz A reappraisal of the petrogenesis of Apollo 17 lunar dunites 72415-72417: Relics of the deep lunar mantle? 2007 Service Award for John Schutt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1