非线性光学特性的理论研究和从蒿草中提取的咔唑类化合物的分子对接

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2024-11-08 DOI:10.1002/slct.202404228
Neha Vishwakarma, Praful S. Patil, Prof. Nagaiyan Sekar
{"title":"非线性光学特性的理论研究和从蒿草中提取的咔唑类化合物的分子对接","authors":"Neha Vishwakarma,&nbsp;Praful S. Patil,&nbsp;Prof. Nagaiyan Sekar","doi":"10.1002/slct.202404228","DOIUrl":null,"url":null,"abstract":"<p>In this study, the density functional theory (DFT) method is used to theoretically investigate the nonlinear optical (NLO) properties of natural carbazoles. The selected carbazoles have significant NLO characteristics. Using the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) level theories, the linear optical absorption, HOMO-LUMO energy gap, molecular electrostatic potential (MEP), and dipole moments were calculated. The first hyperpolarizability (<i>β</i><sub>0</sub>), second hyperpolarizability (<i>γ</i>), and static and dynamic linear polarizability (<i>α</i><sub>0</sub>) components were computed. Electron correlation was obtained, which was compared with NLO and docking studies showing good relation with both. All carbazole compounds demonstrate good optoelectronic qualities that promote their potential use in electronic devices, as demonstrated by the frequency-dependent dynamic hyperpolarizabilities of the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) functionals at 532 and 1064 nm wavelengths. The results of the molecular docking study shows that CBZ molecules exhibit a strong affinity for both Malassezia globosa (SMG1) lipase targets. The docking data demonstrated a strong binding ability, with CBZ7 and CBZ3. This indicates that CBZ7 and CBZ3 outperform all other compounds and have a high binding capability to the target protein.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 42","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Investigation of Nonlinear Optical Properties and Molecular Docking of Carbazoles Derived from Murraya Koenigii\",\"authors\":\"Neha Vishwakarma,&nbsp;Praful S. Patil,&nbsp;Prof. Nagaiyan Sekar\",\"doi\":\"10.1002/slct.202404228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the density functional theory (DFT) method is used to theoretically investigate the nonlinear optical (NLO) properties of natural carbazoles. The selected carbazoles have significant NLO characteristics. Using the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) level theories, the linear optical absorption, HOMO-LUMO energy gap, molecular electrostatic potential (MEP), and dipole moments were calculated. The first hyperpolarizability (<i>β</i><sub>0</sub>), second hyperpolarizability (<i>γ</i>), and static and dynamic linear polarizability (<i>α</i><sub>0</sub>) components were computed. Electron correlation was obtained, which was compared with NLO and docking studies showing good relation with both. All carbazole compounds demonstrate good optoelectronic qualities that promote their potential use in electronic devices, as demonstrated by the frequency-dependent dynamic hyperpolarizabilities of the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) functionals at 532 and 1064 nm wavelengths. The results of the molecular docking study shows that CBZ molecules exhibit a strong affinity for both Malassezia globosa (SMG1) lipase targets. The docking data demonstrated a strong binding ability, with CBZ7 and CBZ3. This indicates that CBZ7 and CBZ3 outperform all other compounds and have a high binding capability to the target protein.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"9 42\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404228\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404228","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT)方法对天然咔唑的非线性光学(NLO)特性进行了理论研究。所选咔唑具有显著的 NLO 特性。利用 B3LYP/6-311++G(d,p) 和 CAM-B3LYP/6-311++G(d,p) 水平理论,计算了线性光吸收、HOMO-LUMO 能隙、分子静电位(MEP)和偶极矩。计算了第一超极化率(β0)、第二超极化率(γ)以及静态和动态线性极化率(α0)分量。获得的电子相关性与 NLO 和对接研究进行了比较,结果表明二者关系良好。B3LYP/6-311++G(d,p) 和 CAM-B3LYP/6-311++G(d,p) 函数在 532 和 1064 nm 波长处的动态超极化率显示,所有咔唑化合物都表现出良好的光电特性,这促进了它们在电子器件中的潜在应用。分子对接研究结果表明,CBZ 分子对球形马拉色菌(SMG1)脂肪酶靶标都表现出很强的亲和力。对接数据表明,CBZ7 和 CBZ3 具有很强的结合能力。这表明 CBZ7 和 CBZ3 优于所有其他化合物,与目标蛋白的结合能力很强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Investigation of Nonlinear Optical Properties and Molecular Docking of Carbazoles Derived from Murraya Koenigii

In this study, the density functional theory (DFT) method is used to theoretically investigate the nonlinear optical (NLO) properties of natural carbazoles. The selected carbazoles have significant NLO characteristics. Using the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) level theories, the linear optical absorption, HOMO-LUMO energy gap, molecular electrostatic potential (MEP), and dipole moments were calculated. The first hyperpolarizability (β0), second hyperpolarizability (γ), and static and dynamic linear polarizability (α0) components were computed. Electron correlation was obtained, which was compared with NLO and docking studies showing good relation with both. All carbazole compounds demonstrate good optoelectronic qualities that promote their potential use in electronic devices, as demonstrated by the frequency-dependent dynamic hyperpolarizabilities of the B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) functionals at 532 and 1064 nm wavelengths. The results of the molecular docking study shows that CBZ molecules exhibit a strong affinity for both Malassezia globosa (SMG1) lipase targets. The docking data demonstrated a strong binding ability, with CBZ7 and CBZ3. This indicates that CBZ7 and CBZ3 outperform all other compounds and have a high binding capability to the target protein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
Design of AIE-active Schiff-bases: Mechanochromic, Thermochromic and Sensing Studies Catalytic Conversion of 2-Phenethyl Phenyl Ether and 2-Phenoxy-1-Phenyl Ethanol Over ZSM-5, Y and Beta Zeolites Visible Light-Active Copper Cobaltite Supported Film for Hexavalent Chromium Photocatalytic Reduction Applications of Graphene Derivatives in All-Solid-State Supercapacitors A Computational Approach: Predicting iNOS Inhibition of Compounds for Alzheimer's Disease Treatment Through QSAR Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1