分辨率更高的地貌图改进了高分辨率模型对青藏高原降水的模拟

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-11-09 DOI:10.1029/2024JD041140
Xiaolong Chen, Tianjun Zhou, Peili Wu, Malcolm J. Roberts
{"title":"分辨率更高的地貌图改进了高分辨率模型对青藏高原降水的模拟","authors":"Xiaolong Chen,&nbsp;Tianjun Zhou,&nbsp;Peili Wu,&nbsp;Malcolm J. Roberts","doi":"10.1029/2024JD041140","DOIUrl":null,"url":null,"abstract":"<p>Regarded as the Asian Water Tower, the Tibetan Plateau (TP) collects atmospheric precipitation from a vast area of land and feeds into major rivers that sustain the livelihood of billions of people in East, South and Central Asia. It is critical to reasonably simulate the hydrological cycle over the TP in order to assess future climate risks to agriculture, water resources and ecosystem services. To address the chronic wet biases over the TP in state-of-the-art climate models, we have compared 12 high-resolution (HR) climate models (25–50 km) to their corresponding low-resolution versions (100–200 km) with respect to the 1979–2014 climatology. It is found that the HR models consistently reduce about half of the wet biases over the TP, mainly from better resolved orography. The wet biases are reduced by 41% over the northern and western TP, mainly contributed by decreased frequency of light precipitation (0.1–10 mm day<sup>−1</sup>), which is attributed to reduced evaporation because of weakened surface wind by raised orography. The most significant reduction of biases (53%) rising from decreased frequency of mid-heavy precipitation (10–50 mm day<sup>−1</sup>), appears over the southern and eastern TP, on the leeside of elevated orography where steeper orography enhances rain shadow effect by stronger downward motion along the sharper slope, while partly compensated by air column convergence due to vertical stretching of the downward flow for potential vorticity conservation. This study highlights the importance of surface processes and resolving complex orography in simulating precipitation and large-scale hydrology around the TP which potentially benefits the future hydrological projection.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 21","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better Resolved Orography Improves Precipitation Simulation Over the Tibetan Plateau in High-Resolution Models\",\"authors\":\"Xiaolong Chen,&nbsp;Tianjun Zhou,&nbsp;Peili Wu,&nbsp;Malcolm J. Roberts\",\"doi\":\"10.1029/2024JD041140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regarded as the Asian Water Tower, the Tibetan Plateau (TP) collects atmospheric precipitation from a vast area of land and feeds into major rivers that sustain the livelihood of billions of people in East, South and Central Asia. It is critical to reasonably simulate the hydrological cycle over the TP in order to assess future climate risks to agriculture, water resources and ecosystem services. To address the chronic wet biases over the TP in state-of-the-art climate models, we have compared 12 high-resolution (HR) climate models (25–50 km) to their corresponding low-resolution versions (100–200 km) with respect to the 1979–2014 climatology. It is found that the HR models consistently reduce about half of the wet biases over the TP, mainly from better resolved orography. The wet biases are reduced by 41% over the northern and western TP, mainly contributed by decreased frequency of light precipitation (0.1–10 mm day<sup>−1</sup>), which is attributed to reduced evaporation because of weakened surface wind by raised orography. The most significant reduction of biases (53%) rising from decreased frequency of mid-heavy precipitation (10–50 mm day<sup>−1</sup>), appears over the southern and eastern TP, on the leeside of elevated orography where steeper orography enhances rain shadow effect by stronger downward motion along the sharper slope, while partly compensated by air column convergence due to vertical stretching of the downward flow for potential vorticity conservation. This study highlights the importance of surface processes and resolving complex orography in simulating precipitation and large-scale hydrology around the TP which potentially benefits the future hydrological projection.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 21\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041140\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041140","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

被誉为 "亚洲水塔 "的青藏高原(TP)从广袤的土地上收集大气降水,并汇入维持东亚、南亚和中亚数十亿人口生计的主要河流。为了评估未来气候对农业、水资源和生态系统服务造成的风险,合理模拟水源涵养地的水文循环至关重要。为了解决最先进的气候模式对大洋洲水文循环的长期偏差问题,我们比较了 12 个高分辨率(HR)气候模式(25-50 千米)和其相应的低分辨率版本(100-200 千米)与 1979-2014 年气候学的关系。结果发现,高分辨率模式持续减少了热带潮湿带约一半的湿偏差,这主要是由于更好地解析了地形。北部和西部大陆架的湿偏差减少了 41%,主要原因是小降水(0.1-10 毫米/天-1)频率降低,这归因于地势升高导致地表风力减弱,从而减少了蒸发。中强降水(10-50 毫米/天-1)频率的减少(53%)对偏差的减小最为明显,出现在南部和东部热带潮湿带,位于地势升高的一侧,较陡的地势通过沿较急的斜坡加强向下运动而增强了雨影效应,但由于向下气流的垂直拉伸,气柱辐合对潜在涡度的保持起到了部分补偿作用。这项研究强调了地表过程和解决复杂地形问题在模拟大洋交界处降水和大尺度水文方面的重要性,这对未来的水文预测有潜在的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Better Resolved Orography Improves Precipitation Simulation Over the Tibetan Plateau in High-Resolution Models

Regarded as the Asian Water Tower, the Tibetan Plateau (TP) collects atmospheric precipitation from a vast area of land and feeds into major rivers that sustain the livelihood of billions of people in East, South and Central Asia. It is critical to reasonably simulate the hydrological cycle over the TP in order to assess future climate risks to agriculture, water resources and ecosystem services. To address the chronic wet biases over the TP in state-of-the-art climate models, we have compared 12 high-resolution (HR) climate models (25–50 km) to their corresponding low-resolution versions (100–200 km) with respect to the 1979–2014 climatology. It is found that the HR models consistently reduce about half of the wet biases over the TP, mainly from better resolved orography. The wet biases are reduced by 41% over the northern and western TP, mainly contributed by decreased frequency of light precipitation (0.1–10 mm day−1), which is attributed to reduced evaporation because of weakened surface wind by raised orography. The most significant reduction of biases (53%) rising from decreased frequency of mid-heavy precipitation (10–50 mm day−1), appears over the southern and eastern TP, on the leeside of elevated orography where steeper orography enhances rain shadow effect by stronger downward motion along the sharper slope, while partly compensated by air column convergence due to vertical stretching of the downward flow for potential vorticity conservation. This study highlights the importance of surface processes and resolving complex orography in simulating precipitation and large-scale hydrology around the TP which potentially benefits the future hydrological projection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Analysis of the Influence of Clear-Sky Fluxes on the Cloud-Type Mean Cloud Radiative Effects in the Tropical Convectively Active Regions With CERES Satellite Data A Simple Model for the Evaporation of Hydrometeors and Their Isotopes Modeling the Effects of Vegetation and Snow on Dust Storm Over the Gobi Desert Origins of Extreme CAPE Around the World A More Transparent Infrared Window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1