Suraj E. Kute, Rohit N. Ketkar, Kaustubh U. Jagushte, Harshada L. Sawant, Aryan Shah, Ganga Periyasamy, Sharmistha Dutta Choudhury, Nabanita Sadhukhan
{"title":"用 D131 辅助染料对四乙二醇取代的不对称锌酞菁敏化太阳能电池进行共敏化可提高效率","authors":"Suraj E. Kute, Rohit N. Ketkar, Kaustubh U. Jagushte, Harshada L. Sawant, Aryan Shah, Ganga Periyasamy, Sharmistha Dutta Choudhury, Nabanita Sadhukhan","doi":"10.1002/slct.202404206","DOIUrl":null,"url":null,"abstract":"<p>An asymmetric zinc phthalocyanine dye (ZnPcT<sub>3</sub>C), bearing three tetraethylene glycol donor groups and one carboxylic acid anchoring group, was synthesized as a photosensitizer dye for dye-sensitized solar cells (DSSCs). The tetraethylene glycol (TEG), consisting of four ethoxy units, works as an amphiphilic long-chain donor group that greatly helped in reducing the molecular aggregation. Carboxylic acid group, on the other hand, an acceptor, together with TEG in ZnPcT<sub>3</sub>C functions as a ‘push–pullʼ system suitable for DSSCs. Absorption spectra of ZnPcT<sub>3</sub>C in DMSO showed a strong sharp Q band in the infrared region 600–700 nm with (<i>λ</i><sub>max</sub> = 682 nm) and a less intense soret band appeared in the region 300–400 nm with <i>λ</i><sub>max</sub> = 340 nm. The zinc phthalocyanine (ZnPcT<sub>3</sub>C) exhibited molar extinction coefficient (<i>ε</i>) of 72,727 L mol<sup>−1</sup>cm<sup>−1</sup>. The emission was observed at <i>λ</i><sub>em</sub> = 695 nm upon excitation at 650 nm and exhibited a fluorescence decay of 2.82 ns. The ZnPcT<sub>3</sub>C dye sensitised solar cell (<i>c</i> = 1 mM) exhibited the power conversion efficiency (<i>η</i>) of 3.52% in chloroform in I<sup>−</sup>/I<sub>3</sub> electrolyte under simulated 100% brightness. Cosensitization of ZnPcT<sub>3</sub>C with another auxiliary dye D131 in 1:1 ratio in a cocktail-type DSSC attained the power conversion efficiency of twice as high as <i>η</i> = 6.27% in an identical condition. A mixture of D131 (<i>λ</i><sub>max</sub> = 470 nm) dye with the ZnPcT<sub>3</sub>C phthalocyanine harvests sunlight across the visible spectra, enabling DSSCs to attain a large photocurrent and photovoltage, enhancing power conversion efficiency.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 43","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosensitization of a Tetraethylene Glycol-Substituted Unsymmetrical Zinc Phthalocyanine Sensitized Solar Cells with D131 Auxiliary Dye Exhibited Enhanced Efficiency\",\"authors\":\"Suraj E. Kute, Rohit N. Ketkar, Kaustubh U. Jagushte, Harshada L. Sawant, Aryan Shah, Ganga Periyasamy, Sharmistha Dutta Choudhury, Nabanita Sadhukhan\",\"doi\":\"10.1002/slct.202404206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An asymmetric zinc phthalocyanine dye (ZnPcT<sub>3</sub>C), bearing three tetraethylene glycol donor groups and one carboxylic acid anchoring group, was synthesized as a photosensitizer dye for dye-sensitized solar cells (DSSCs). The tetraethylene glycol (TEG), consisting of four ethoxy units, works as an amphiphilic long-chain donor group that greatly helped in reducing the molecular aggregation. Carboxylic acid group, on the other hand, an acceptor, together with TEG in ZnPcT<sub>3</sub>C functions as a ‘push–pullʼ system suitable for DSSCs. Absorption spectra of ZnPcT<sub>3</sub>C in DMSO showed a strong sharp Q band in the infrared region 600–700 nm with (<i>λ</i><sub>max</sub> = 682 nm) and a less intense soret band appeared in the region 300–400 nm with <i>λ</i><sub>max</sub> = 340 nm. The zinc phthalocyanine (ZnPcT<sub>3</sub>C) exhibited molar extinction coefficient (<i>ε</i>) of 72,727 L mol<sup>−1</sup>cm<sup>−1</sup>. The emission was observed at <i>λ</i><sub>em</sub> = 695 nm upon excitation at 650 nm and exhibited a fluorescence decay of 2.82 ns. The ZnPcT<sub>3</sub>C dye sensitised solar cell (<i>c</i> = 1 mM) exhibited the power conversion efficiency (<i>η</i>) of 3.52% in chloroform in I<sup>−</sup>/I<sub>3</sub> electrolyte under simulated 100% brightness. Cosensitization of ZnPcT<sub>3</sub>C with another auxiliary dye D131 in 1:1 ratio in a cocktail-type DSSC attained the power conversion efficiency of twice as high as <i>η</i> = 6.27% in an identical condition. A mixture of D131 (<i>λ</i><sub>max</sub> = 470 nm) dye with the ZnPcT<sub>3</sub>C phthalocyanine harvests sunlight across the visible spectra, enabling DSSCs to attain a large photocurrent and photovoltage, enhancing power conversion efficiency.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"9 43\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404206\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404206","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cosensitization of a Tetraethylene Glycol-Substituted Unsymmetrical Zinc Phthalocyanine Sensitized Solar Cells with D131 Auxiliary Dye Exhibited Enhanced Efficiency
An asymmetric zinc phthalocyanine dye (ZnPcT3C), bearing three tetraethylene glycol donor groups and one carboxylic acid anchoring group, was synthesized as a photosensitizer dye for dye-sensitized solar cells (DSSCs). The tetraethylene glycol (TEG), consisting of four ethoxy units, works as an amphiphilic long-chain donor group that greatly helped in reducing the molecular aggregation. Carboxylic acid group, on the other hand, an acceptor, together with TEG in ZnPcT3C functions as a ‘push–pullʼ system suitable for DSSCs. Absorption spectra of ZnPcT3C in DMSO showed a strong sharp Q band in the infrared region 600–700 nm with (λmax = 682 nm) and a less intense soret band appeared in the region 300–400 nm with λmax = 340 nm. The zinc phthalocyanine (ZnPcT3C) exhibited molar extinction coefficient (ε) of 72,727 L mol−1cm−1. The emission was observed at λem = 695 nm upon excitation at 650 nm and exhibited a fluorescence decay of 2.82 ns. The ZnPcT3C dye sensitised solar cell (c = 1 mM) exhibited the power conversion efficiency (η) of 3.52% in chloroform in I−/I3 electrolyte under simulated 100% brightness. Cosensitization of ZnPcT3C with another auxiliary dye D131 in 1:1 ratio in a cocktail-type DSSC attained the power conversion efficiency of twice as high as η = 6.27% in an identical condition. A mixture of D131 (λmax = 470 nm) dye with the ZnPcT3C phthalocyanine harvests sunlight across the visible spectra, enabling DSSCs to attain a large photocurrent and photovoltage, enhancing power conversion efficiency.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.