使用混合优化方法优化云中的数据复制

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS Transactions on Emerging Telecommunications Technologies Pub Date : 2024-11-12 DOI:10.1002/ett.70022
D. Rambabu, A. Govardhan
{"title":"使用混合优化方法优化云中的数据复制","authors":"D. Rambabu,&nbsp;A. Govardhan","doi":"10.1002/ett.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cloud computing (CC), in contrast to traditional high-performance computing environments, is a group of imaginary and networked resources of computing that are controlled by one unified maximum-performance computing power. Here, this work aims to develop a novel data replication method in the cloud. The data replication is carried out with a new multi-objective technique that considers constraints like cost, the distance between data centers, trust, and risk. Moreover, for optimal data replication, a new hybrid algorithm termed poor rich strategy assisted grasshopper optimization (PRS-GO) is introduced. To increase the accessibility of the system, the data used continuously should be duplicated in various areas. A minimal mean value of 0.66 is gained with the PRS-GO scheme, whereas Particle Swarm Optimization-Tabu Search (PSO + TS), Receding Horizon Control (RHC), Sun Flower Optimization (SFO), Cat Mouse-Based Optimization (CMBO), Hunger Games Search Optimization (HGSO), Seagull Optimization (SGO), Poor And Rich Optimization (PRO), and Grasshopper Optimization Algorithm (GOA) have got a high mean value of 0.722, 0.71, 0.71, 0.71, 0.7, 0.7, 0.7, and 0.69.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Data Replication in Cloud Using Hybrid Optimization Approach\",\"authors\":\"D. Rambabu,&nbsp;A. Govardhan\",\"doi\":\"10.1002/ett.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cloud computing (CC), in contrast to traditional high-performance computing environments, is a group of imaginary and networked resources of computing that are controlled by one unified maximum-performance computing power. Here, this work aims to develop a novel data replication method in the cloud. The data replication is carried out with a new multi-objective technique that considers constraints like cost, the distance between data centers, trust, and risk. Moreover, for optimal data replication, a new hybrid algorithm termed poor rich strategy assisted grasshopper optimization (PRS-GO) is introduced. To increase the accessibility of the system, the data used continuously should be duplicated in various areas. A minimal mean value of 0.66 is gained with the PRS-GO scheme, whereas Particle Swarm Optimization-Tabu Search (PSO + TS), Receding Horizon Control (RHC), Sun Flower Optimization (SFO), Cat Mouse-Based Optimization (CMBO), Hunger Games Search Optimization (HGSO), Seagull Optimization (SGO), Poor And Rich Optimization (PRO), and Grasshopper Optimization Algorithm (GOA) have got a high mean value of 0.722, 0.71, 0.71, 0.71, 0.7, 0.7, 0.7, and 0.69.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

与传统的高性能计算环境不同,云计算(CC)是一组虚构的网络化计算资源,由统一的最高性能计算能力控制。本研究旨在开发一种新型的云计算数据复制方法。数据复制采用一种新的多目标技术,该技术考虑了成本、数据中心之间的距离、信任和风险等约束条件。此外,为了优化数据复制,引入了一种新的混合算法,称为穷富策略辅助蚱蜢优化(PRS-GO)。为了提高系统的可访问性,连续使用的数据应在不同区域进行复制。PRS-GO 方案的最小平均值为 0.66,而粒子群优化-塔布搜索(PSO + TS)、后退地平线控制(RHC)、太阳花优化(SFO)、基于猫鼠的优化(CMBO)、饥饿游戏搜索优化(HGSO)、海鸥优化(SGO)、贫富优化(PRO)和蚱蜢优化算法(GOA)的平均值分别为 0.722、0.71、0.71、0.71、0.7、0.7、0.7 和 0.69。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Data Replication in Cloud Using Hybrid Optimization Approach

Cloud computing (CC), in contrast to traditional high-performance computing environments, is a group of imaginary and networked resources of computing that are controlled by one unified maximum-performance computing power. Here, this work aims to develop a novel data replication method in the cloud. The data replication is carried out with a new multi-objective technique that considers constraints like cost, the distance between data centers, trust, and risk. Moreover, for optimal data replication, a new hybrid algorithm termed poor rich strategy assisted grasshopper optimization (PRS-GO) is introduced. To increase the accessibility of the system, the data used continuously should be duplicated in various areas. A minimal mean value of 0.66 is gained with the PRS-GO scheme, whereas Particle Swarm Optimization-Tabu Search (PSO + TS), Receding Horizon Control (RHC), Sun Flower Optimization (SFO), Cat Mouse-Based Optimization (CMBO), Hunger Games Search Optimization (HGSO), Seagull Optimization (SGO), Poor And Rich Optimization (PRO), and Grasshopper Optimization Algorithm (GOA) have got a high mean value of 0.722, 0.71, 0.71, 0.71, 0.7, 0.7, 0.7, and 0.69.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
期刊最新文献
Distributed Cooperative Spectrum Optimization Method Based on Coalition Formation Game for Ocean and Traffic Iot An Extensive Review of Machine Learning and Deep Learning Techniques on Network Intrusion Detection for IoT Optimal Beamforming for Covert Communication in MIMO Relay Systems An Enhanced IOMT and Blockchain-Based Heart Disease Monitoring System Using BS-THA and OA-CNN Blockchain Empowered Quantum Safe Batch Aggregate Signature Algorithm for Authenticated Data Trading in Internet of Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1