Jie Li, Jianwei Guo, Xue Li, Wenteng Liang, Jiannan Zhang, Bin Yang, Fang Liang, Xiao Yu
{"title":"基于点对点交易和纳什讨价还价法的虚拟发电厂协调优化","authors":"Jie Li, Jianwei Guo, Xue Li, Wenteng Liang, Jiannan Zhang, Bin Yang, Fang Liang, Xiao Yu","doi":"10.1155/2024/3687275","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Distributed power supply has seen a significant rise because of the increasing demand for renewable energy. This rise has also presented various challenges, including independent operation and a lack of coordination among the sources. As a result of these challenges, these distributed power supplies are combined into a virtual power plant (VPP). This paper addresses these issues of interaction and coordination with a proposal for multitype VPP and modeling technology. First, it recommends establishing a peer-to-peer (P2P) transaction framework. Second, Nash bargaining cooperative game theory comes into play, which involves multiple stakeholders in establishing a P2P transaction framework among stakeholders. After that, this proposed model is solved using the alternating direction multipliers method (ADMM). In the end, the verification of this proposed model is achieved by the numerical example that ensures that the VPP alliance operates stably.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3687275","citationCount":"0","resultStr":"{\"title\":\"Coordinated Optimization of Virtual Power Plants Based on Peer-to-Peer Transactions and Nash Bargaining Approach\",\"authors\":\"Jie Li, Jianwei Guo, Xue Li, Wenteng Liang, Jiannan Zhang, Bin Yang, Fang Liang, Xiao Yu\",\"doi\":\"10.1155/2024/3687275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Distributed power supply has seen a significant rise because of the increasing demand for renewable energy. This rise has also presented various challenges, including independent operation and a lack of coordination among the sources. As a result of these challenges, these distributed power supplies are combined into a virtual power plant (VPP). This paper addresses these issues of interaction and coordination with a proposal for multitype VPP and modeling technology. First, it recommends establishing a peer-to-peer (P2P) transaction framework. Second, Nash bargaining cooperative game theory comes into play, which involves multiple stakeholders in establishing a P2P transaction framework among stakeholders. After that, this proposed model is solved using the alternating direction multipliers method (ADMM). In the end, the verification of this proposed model is achieved by the numerical example that ensures that the VPP alliance operates stably.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3687275\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3687275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3687275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Coordinated Optimization of Virtual Power Plants Based on Peer-to-Peer Transactions and Nash Bargaining Approach
Distributed power supply has seen a significant rise because of the increasing demand for renewable energy. This rise has also presented various challenges, including independent operation and a lack of coordination among the sources. As a result of these challenges, these distributed power supplies are combined into a virtual power plant (VPP). This paper addresses these issues of interaction and coordination with a proposal for multitype VPP and modeling technology. First, it recommends establishing a peer-to-peer (P2P) transaction framework. Second, Nash bargaining cooperative game theory comes into play, which involves multiple stakeholders in establishing a P2P transaction framework among stakeholders. After that, this proposed model is solved using the alternating direction multipliers method (ADMM). In the end, the verification of this proposed model is achieved by the numerical example that ensures that the VPP alliance operates stably.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.