Edurne Martinez del Castillo, Max C. A. Torbenson, Frederick Reinig, Ernesto Tejedor, Martín de Luis, Jan Esper
{"title":"挪威云杉和苏格兰松树林在气候变暖条件下的未来生长对比","authors":"Edurne Martinez del Castillo, Max C. A. Torbenson, Frederick Reinig, Ernesto Tejedor, Martín de Luis, Jan Esper","doi":"10.1111/gcb.17580","DOIUrl":null,"url":null,"abstract":"<p>Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 <i>Picea abies</i> and <i>Pinus sylvestris</i> stands across Europe to predict species-specific tree growth variability from 1950 to 2016 (<i>R</i><sup>2</sup> > 0.82) and develop 21st-century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 11","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17580","citationCount":"0","resultStr":"{\"title\":\"Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate\",\"authors\":\"Edurne Martinez del Castillo, Max C. A. Torbenson, Frederick Reinig, Ernesto Tejedor, Martín de Luis, Jan Esper\",\"doi\":\"10.1111/gcb.17580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 <i>Picea abies</i> and <i>Pinus sylvestris</i> stands across Europe to predict species-specific tree growth variability from 1950 to 2016 (<i>R</i><sup>2</sup> > 0.82) and develop 21st-century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17580\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17580","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate
Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species-specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st-century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.