Ying Yang, Xiaotong Shi, Junze Zhang, Huining Xiao, Chengcheng Li
{"title":"基于非靶向代谢组学分析的纳米多糖生产型植物乳杆菌LCC-605制备的发酵酸奶有益作用的分子机制","authors":"Ying Yang, Xiaotong Shi, Junze Zhang, Huining Xiao, Chengcheng Li","doi":"10.1016/j.foodchem.2024.142068","DOIUrl":null,"url":null,"abstract":"Following our previous discovery that <em>Lactiplantibacillus plantarum</em> LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS<sup>+</sup>, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"1 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis\",\"authors\":\"Ying Yang, Xiaotong Shi, Junze Zhang, Huining Xiao, Chengcheng Li\",\"doi\":\"10.1016/j.foodchem.2024.142068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following our previous discovery that <em>Lactiplantibacillus plantarum</em> LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS<sup>+</sup>, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142068\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142068","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.