利用生成式对抗网络从水泥浆二维图像生成三维微观结构

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement and Concrete Research Pub Date : 2024-11-16 DOI:10.1016/j.cemconres.2024.107726
Xin Zhao , Lin Wang , Qinfei Li , Heng Chen , Shuangrong Liu , Pengkun Hou , Jiayuan Ye , Yan Pei , Xu Wu , Jianfeng Yuan , Haozhong Gao , Bo Yang
{"title":"利用生成式对抗网络从水泥浆二维图像生成三维微观结构","authors":"Xin Zhao ,&nbsp;Lin Wang ,&nbsp;Qinfei Li ,&nbsp;Heng Chen ,&nbsp;Shuangrong Liu ,&nbsp;Pengkun Hou ,&nbsp;Jiayuan Ye ,&nbsp;Yan Pei ,&nbsp;Xu Wu ,&nbsp;Jianfeng Yuan ,&nbsp;Haozhong Gao ,&nbsp;Bo Yang","doi":"10.1016/j.cemconres.2024.107726","DOIUrl":null,"url":null,"abstract":"<div><div>Establishing a realistic three-dimensional (3D) microstructure is a crucial step for studying microstructure development of hardened cement pastes. However, acquiring 3D microstructural images for cement often involves high costs and quality compromises. This paper proposes a generative adversarial networks-based method for generating 3D microstructures from a single two-dimensional (2D) image, capable of producing high-quality and realistic 3D images at low cost. In the method, a framework (CEM3DMG) is designed to synthesize 3D images by learning microstructural information from a 2D cross-sectional image. Experimental results show that CEM3DMG can generate realistic 3D images of large size. Visual observation confirms that the generated 3D images exhibit similar microstructural features to the 2D images, including similar pore distribution and particle morphology. Furthermore, quantitative analysis reveals that reconstructed 3D microstructures closely match the real 2D microstructure in terms of gray level histogram, phase proportions, and pore size distribution.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"187 ","pages":"Article 107726"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D microstructural generation from 2D images of cement paste using generative adversarial networks\",\"authors\":\"Xin Zhao ,&nbsp;Lin Wang ,&nbsp;Qinfei Li ,&nbsp;Heng Chen ,&nbsp;Shuangrong Liu ,&nbsp;Pengkun Hou ,&nbsp;Jiayuan Ye ,&nbsp;Yan Pei ,&nbsp;Xu Wu ,&nbsp;Jianfeng Yuan ,&nbsp;Haozhong Gao ,&nbsp;Bo Yang\",\"doi\":\"10.1016/j.cemconres.2024.107726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Establishing a realistic three-dimensional (3D) microstructure is a crucial step for studying microstructure development of hardened cement pastes. However, acquiring 3D microstructural images for cement often involves high costs and quality compromises. This paper proposes a generative adversarial networks-based method for generating 3D microstructures from a single two-dimensional (2D) image, capable of producing high-quality and realistic 3D images at low cost. In the method, a framework (CEM3DMG) is designed to synthesize 3D images by learning microstructural information from a 2D cross-sectional image. Experimental results show that CEM3DMG can generate realistic 3D images of large size. Visual observation confirms that the generated 3D images exhibit similar microstructural features to the 2D images, including similar pore distribution and particle morphology. Furthermore, quantitative analysis reveals that reconstructed 3D microstructures closely match the real 2D microstructure in terms of gray level histogram, phase proportions, and pore size distribution.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"187 \",\"pages\":\"Article 107726\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624003077\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624003077","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建立逼真的三维(3D)微观结构是研究硬化水泥浆微观结构发展的关键步骤。然而,获取水泥的三维微观结构图像往往需要高昂的成本和质量上的妥协。本文提出了一种基于生成对抗网络的方法,用于从单张二维(2D)图像生成三维微观结构,能够以低成本生成高质量、逼真的三维图像。该方法设计了一个框架(CEM3DMG),通过学习二维横截面图像中的微结构信息来合成三维图像。实验结果表明,CEM3DMG 可以生成逼真的大尺寸三维图像。肉眼观察证实,生成的三维图像显示出与二维图像相似的微观结构特征,包括相似的孔隙分布和颗粒形态。此外,定量分析显示,重建的三维微观结构在灰度直方图、相比例和孔径分布方面与真实的二维微观结构非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D microstructural generation from 2D images of cement paste using generative adversarial networks
Establishing a realistic three-dimensional (3D) microstructure is a crucial step for studying microstructure development of hardened cement pastes. However, acquiring 3D microstructural images for cement often involves high costs and quality compromises. This paper proposes a generative adversarial networks-based method for generating 3D microstructures from a single two-dimensional (2D) image, capable of producing high-quality and realistic 3D images at low cost. In the method, a framework (CEM3DMG) is designed to synthesize 3D images by learning microstructural information from a 2D cross-sectional image. Experimental results show that CEM3DMG can generate realistic 3D images of large size. Visual observation confirms that the generated 3D images exhibit similar microstructural features to the 2D images, including similar pore distribution and particle morphology. Furthermore, quantitative analysis reveals that reconstructed 3D microstructures closely match the real 2D microstructure in terms of gray level histogram, phase proportions, and pore size distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
期刊最新文献
Reactive transport modelling of autogenous self-healing in cracked concrete Modelling and experimental study on static yield stress evolution and structural build-up of cement paste in early stage of cement hydration A new model for investigating the formation of interfacial transition zone in cement-based materials Ca/Si-dependent size of silica nanoparticles derived from C-S-H at high water to solid ratio Expansion of irregularly shaped aggregate induced by alkali-silica reaction: Insights from numerical modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1