Zhichun Shi, Haoyuan Tang, Liqiu Sun, Jianjun Wang, Jun Li, Dan Wang, Liying Qi, Liyan Wang, Guohua Dong, Ming Zhao
{"title":"用于高效和可逆碘捕获的苯醌氨基超交联聚合物","authors":"Zhichun Shi, Haoyuan Tang, Liqiu Sun, Jianjun Wang, Jun Li, Dan Wang, Liying Qi, Liyan Wang, Guohua Dong, Ming Zhao","doi":"10.1016/j.seppur.2024.130570","DOIUrl":null,"url":null,"abstract":"Designing and preparing of materials for high highly efficiency and reversible iodine adsorption remains a challenging task. In this study, a series of benzonquanmine-based hypercrosslinked polymers (BHCPs) with nitrogen-rich were designed and synthesized via Friedel-Crafts reaction. The obtained BHCPs showed the high specific surface and high thermal stability. Moreover, the BHCP-3 of BHCPs exhibits excellent iodine capture performance, including ultrahigh iodine vapor adsorption capacity of 619 wt%, the breakthrough iodine experiment of the adsorption capacity reached 2.29 g/g, which is the highest published capacity of HCP adsorbent. And the removal rate of iodine in aqueous solution also reached 92.5 %, and reached 87.4 % the first 10 min, demonstrating rapid adsorption effects. Additionally, the iodine adsorption process of BHCPs conformed to the pseudo-second-order kinetic models, and which were a multi-layer adsorption on non-homogeneous surfaces. Furthermore, the three adsorbents maintained more than 85 % of their iodine capture capacity after five cycles, demonstrating their good recyclability and potential for practical applications.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"32 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzonquanmine-based hypercrosslinked polymers for high-efficiency and reversible iodine capture\",\"authors\":\"Zhichun Shi, Haoyuan Tang, Liqiu Sun, Jianjun Wang, Jun Li, Dan Wang, Liying Qi, Liyan Wang, Guohua Dong, Ming Zhao\",\"doi\":\"10.1016/j.seppur.2024.130570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing and preparing of materials for high highly efficiency and reversible iodine adsorption remains a challenging task. In this study, a series of benzonquanmine-based hypercrosslinked polymers (BHCPs) with nitrogen-rich were designed and synthesized via Friedel-Crafts reaction. The obtained BHCPs showed the high specific surface and high thermal stability. Moreover, the BHCP-3 of BHCPs exhibits excellent iodine capture performance, including ultrahigh iodine vapor adsorption capacity of 619 wt%, the breakthrough iodine experiment of the adsorption capacity reached 2.29 g/g, which is the highest published capacity of HCP adsorbent. And the removal rate of iodine in aqueous solution also reached 92.5 %, and reached 87.4 % the first 10 min, demonstrating rapid adsorption effects. Additionally, the iodine adsorption process of BHCPs conformed to the pseudo-second-order kinetic models, and which were a multi-layer adsorption on non-homogeneous surfaces. Furthermore, the three adsorbents maintained more than 85 % of their iodine capture capacity after five cycles, demonstrating their good recyclability and potential for practical applications.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2024.130570\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Benzonquanmine-based hypercrosslinked polymers for high-efficiency and reversible iodine capture
Designing and preparing of materials for high highly efficiency and reversible iodine adsorption remains a challenging task. In this study, a series of benzonquanmine-based hypercrosslinked polymers (BHCPs) with nitrogen-rich were designed and synthesized via Friedel-Crafts reaction. The obtained BHCPs showed the high specific surface and high thermal stability. Moreover, the BHCP-3 of BHCPs exhibits excellent iodine capture performance, including ultrahigh iodine vapor adsorption capacity of 619 wt%, the breakthrough iodine experiment of the adsorption capacity reached 2.29 g/g, which is the highest published capacity of HCP adsorbent. And the removal rate of iodine in aqueous solution also reached 92.5 %, and reached 87.4 % the first 10 min, demonstrating rapid adsorption effects. Additionally, the iodine adsorption process of BHCPs conformed to the pseudo-second-order kinetic models, and which were a multi-layer adsorption on non-homogeneous surfaces. Furthermore, the three adsorbents maintained more than 85 % of their iodine capture capacity after five cycles, demonstrating their good recyclability and potential for practical applications.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.