pH值响应型天然深层共晶溶剂:从油砂中可持续提取石油烃的环保替代方案

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-16 DOI:10.1021/acs.langmuir.4c03295
Shaoyang Liu, Jie Qi, Yuzhe Li, Ruiyao Wang, Li Wang, Hongsheng Lu, Zheng Zhang
{"title":"pH值响应型天然深层共晶溶剂:从油砂中可持续提取石油烃的环保替代方案","authors":"Shaoyang Liu, Jie Qi, Yuzhe Li, Ruiyao Wang, Li Wang, Hongsheng Lu, Zheng Zhang","doi":"10.1021/acs.langmuir.4c03295","DOIUrl":null,"url":null,"abstract":"The reversible shift in polarity or hydrophilicity/hydrophobicity of switchable solvents greatly simplifies the recovery capacity in extraction applications. However, the environmental and economical advantages of switchable solvents are not significant. In this work, we designed three pH-responsive natural deep eutectic solvents (NADESs) by combining the pH-switchable solvent fatty acids with the nonswitchable solvent ethyl lactate (EL), followed by the exploration of the solubilization and separation performance of these NADESs for petroleum hydrocarbons. EL can be miscible in fatty acids and water; however, when in contact with both at the same time, EL binds to fatty acids through stronger intermolecular hydrogen bonds, whereas when fatty acids are deprotonated to fatty acid salts, EL can bind to water. The deprotonation/protonation of fatty acids could reversibly change the NADES hydrophilicity, and the recovery of NADES HA/EL could exceed 95% after three cycles. Furthermore, after extractive separation of simulated oils of differing complexity, NADES HA/EL was selected as the best extractant. Compared with the extraction of oil sands with a single solvent, NADES provides better wetting of the sand surface, better stripping efficiency of the heavy components that adhere to the surface of oil sands, and better dispersion of the stripped petroleum hydrocarbons. Petroleum hydrocarbons can be separated by NaOH-induced hydrophilic changes in NADES, which can be regenerated upon the addition of HCl. The recovered NADES showed good reusability in the cleaning of oil sands. The oil removal rates were 96.9%, 94.4%, and 91.9% after three cycles of cleaning with NADES at 25 °C. This method is expected to expand the application of nonswitchable solvents in sustainable extraction.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"18 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Responsive Natural Deep Eutectic Solvent: An Environmental Alternative for the Sustainable Extraction of Petroleum Hydrocarbons from Oil Sands\",\"authors\":\"Shaoyang Liu, Jie Qi, Yuzhe Li, Ruiyao Wang, Li Wang, Hongsheng Lu, Zheng Zhang\",\"doi\":\"10.1021/acs.langmuir.4c03295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reversible shift in polarity or hydrophilicity/hydrophobicity of switchable solvents greatly simplifies the recovery capacity in extraction applications. However, the environmental and economical advantages of switchable solvents are not significant. In this work, we designed three pH-responsive natural deep eutectic solvents (NADESs) by combining the pH-switchable solvent fatty acids with the nonswitchable solvent ethyl lactate (EL), followed by the exploration of the solubilization and separation performance of these NADESs for petroleum hydrocarbons. EL can be miscible in fatty acids and water; however, when in contact with both at the same time, EL binds to fatty acids through stronger intermolecular hydrogen bonds, whereas when fatty acids are deprotonated to fatty acid salts, EL can bind to water. The deprotonation/protonation of fatty acids could reversibly change the NADES hydrophilicity, and the recovery of NADES HA/EL could exceed 95% after three cycles. Furthermore, after extractive separation of simulated oils of differing complexity, NADES HA/EL was selected as the best extractant. Compared with the extraction of oil sands with a single solvent, NADES provides better wetting of the sand surface, better stripping efficiency of the heavy components that adhere to the surface of oil sands, and better dispersion of the stripped petroleum hydrocarbons. Petroleum hydrocarbons can be separated by NaOH-induced hydrophilic changes in NADES, which can be regenerated upon the addition of HCl. The recovered NADES showed good reusability in the cleaning of oil sands. The oil removal rates were 96.9%, 94.4%, and 91.9% after three cycles of cleaning with NADES at 25 °C. This method is expected to expand the application of nonswitchable solvents in sustainable extraction.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03295\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03295","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可切换溶剂的极性或亲水性/疏水性的可逆转换大大简化了萃取应用中的回收能力。然而,可切换溶剂在环境和经济方面的优势并不明显。在这项工作中,我们将 pH 可切换溶剂脂肪酸与不可切换溶剂乳酸乙酯(EL)结合起来,设计出了三种 pH 响应型天然深共晶溶剂(NADES),并探索了这些 NADES 对石油烃类的增溶和分离性能。乳酸乙酯可混溶于脂肪酸和水;然而,当同时与这两种物质接触时,乳酸乙酯会通过更强的分子间氢键与脂肪酸结合,而当脂肪酸被去质子化为脂肪酸盐时,乳酸乙酯则可与水结合。脂肪酸的去质子化/质子化可逆地改变 NADES 的亲水性,经过三个循环后,NADES HA/EL 的回收率可超过 95%。此外,在对不同复杂程度的模拟油进行萃取分离后,NADES HA/EL被选为最佳萃取剂。与使用单一溶剂萃取油砂相比,NADES 对油砂表面的润湿性更好,对附着在油砂表面的重组分的剥离效率更高,对剥离出的石油烃的分散性更好。石油烃可通过 NaOH 引起的 NADES 亲水性变化分离出来,NADES 可在加入盐酸后再生。回收的 NADES 在清洁油砂方面表现出良好的可再利用性。在 25 °C 下使用 NADES 清洗三个周期后,除油率分别为 96.9%、94.4% 和 91.9%。这种方法有望扩大不可切换溶剂在可持续开采中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH-Responsive Natural Deep Eutectic Solvent: An Environmental Alternative for the Sustainable Extraction of Petroleum Hydrocarbons from Oil Sands
The reversible shift in polarity or hydrophilicity/hydrophobicity of switchable solvents greatly simplifies the recovery capacity in extraction applications. However, the environmental and economical advantages of switchable solvents are not significant. In this work, we designed three pH-responsive natural deep eutectic solvents (NADESs) by combining the pH-switchable solvent fatty acids with the nonswitchable solvent ethyl lactate (EL), followed by the exploration of the solubilization and separation performance of these NADESs for petroleum hydrocarbons. EL can be miscible in fatty acids and water; however, when in contact with both at the same time, EL binds to fatty acids through stronger intermolecular hydrogen bonds, whereas when fatty acids are deprotonated to fatty acid salts, EL can bind to water. The deprotonation/protonation of fatty acids could reversibly change the NADES hydrophilicity, and the recovery of NADES HA/EL could exceed 95% after three cycles. Furthermore, after extractive separation of simulated oils of differing complexity, NADES HA/EL was selected as the best extractant. Compared with the extraction of oil sands with a single solvent, NADES provides better wetting of the sand surface, better stripping efficiency of the heavy components that adhere to the surface of oil sands, and better dispersion of the stripped petroleum hydrocarbons. Petroleum hydrocarbons can be separated by NaOH-induced hydrophilic changes in NADES, which can be regenerated upon the addition of HCl. The recovered NADES showed good reusability in the cleaning of oil sands. The oil removal rates were 96.9%, 94.4%, and 91.9% after three cycles of cleaning with NADES at 25 °C. This method is expected to expand the application of nonswitchable solvents in sustainable extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
CO2 Microbubbles in Silicone Oil (Part II: Henry’s Constant and Anomalous Diffusion) Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration Structural Reorganizations and Nanodomain Emergence in Lipid Membranes Driven by Ionic Liquids Performance of xMg3Al1-LDH@ZIF-8 in High Efficiency Electrocatalytic Reduction of CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1