{"title":"极性分子互萼削弱 MnPS3 中的 P2─S 键,实现超高容量钠存储","authors":"Xueyang Tu, Ke Fan, Baixin Peng, Shaoning Zhang, Yiran Ma, Yuqiang Fang, Haitao Huang, Fuqiang Huang","doi":"10.1002/smll.202406328","DOIUrl":null,"url":null,"abstract":"Layered transition metal trithiophosphates (<jats:italic>TM</jats:italic>PS<jats:sub>3</jats:sub>, <jats:italic>TM</jats:italic> = Mn, Fe, Co, <jats:italic>etc</jats:italic>.) with high theoretical capacity (>1 300 mAh g<jats:sup>−1</jats:sup>) are potential anode materials for sodium‐ion batteries (SIBs). However, the strong bonding between P<jats:sub>2</jats:sub> dimers and S atoms in <jats:italic>TM</jats:italic>PS<jats:sub>3</jats:sub> hinders the efficient alloying reaction between P<jats:sub>2</jats:sub> dimers and Na<jats:sup>+</jats:sup>, resulting in practical capacities much lower than theoretical values. Herein, a polar molecule diisopropylamine (DIPA) is intercalated into MnPS<jats:sub>3</jats:sub> for the first time to improve the sodium storage performance effectively. Theoretical calculations show that the electron transfer between DIPA and MnPS<jats:sub>3</jats:sub> induces more delocalized S <jats:italic>p</jats:italic> states and weaker P─S bonds, significantly enhancing the electrochemical activity and sodiation/desodiation reaction kinetics. Moreover, the expanded interlayer spacing from 6.48 to 10.75 Å enables faster Na<jats:sup>+</jats:sup> diffusion and more active sites for Na<jats:sup>+</jats:sup> adsorption. As expected, the DIPA‐MnPS<jats:sub>3</jats:sub> exhibits an ultrahigh capacity of 1,023 mAh g<jats:sup>−1</jats:sup> at 0.2 A g<jats:sup>−1</jats:sup> and excellent cycling performance (≈100% capacity retention after 4 200 cycles at 10 A g<jats:sup>−1</jats:sup>), far outperforming those metal thiophosphates anodes reported for SIBs. Interestingly, in situ and ex situ characterizations reveal a quasi‐topological intercalation mechanism of DIPA‐MnPS<jats:sub>3</jats:sub>. This work provides a novel strategy for the design of high‐performance anode materials for SIBs.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar Molecule Intercalation to Weaken P2─S Bonding in MnPS3 Toward Ultrahigh‐Capacity Sodium Storage\",\"authors\":\"Xueyang Tu, Ke Fan, Baixin Peng, Shaoning Zhang, Yiran Ma, Yuqiang Fang, Haitao Huang, Fuqiang Huang\",\"doi\":\"10.1002/smll.202406328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered transition metal trithiophosphates (<jats:italic>TM</jats:italic>PS<jats:sub>3</jats:sub>, <jats:italic>TM</jats:italic> = Mn, Fe, Co, <jats:italic>etc</jats:italic>.) with high theoretical capacity (>1 300 mAh g<jats:sup>−1</jats:sup>) are potential anode materials for sodium‐ion batteries (SIBs). However, the strong bonding between P<jats:sub>2</jats:sub> dimers and S atoms in <jats:italic>TM</jats:italic>PS<jats:sub>3</jats:sub> hinders the efficient alloying reaction between P<jats:sub>2</jats:sub> dimers and Na<jats:sup>+</jats:sup>, resulting in practical capacities much lower than theoretical values. Herein, a polar molecule diisopropylamine (DIPA) is intercalated into MnPS<jats:sub>3</jats:sub> for the first time to improve the sodium storage performance effectively. Theoretical calculations show that the electron transfer between DIPA and MnPS<jats:sub>3</jats:sub> induces more delocalized S <jats:italic>p</jats:italic> states and weaker P─S bonds, significantly enhancing the electrochemical activity and sodiation/desodiation reaction kinetics. Moreover, the expanded interlayer spacing from 6.48 to 10.75 Å enables faster Na<jats:sup>+</jats:sup> diffusion and more active sites for Na<jats:sup>+</jats:sup> adsorption. As expected, the DIPA‐MnPS<jats:sub>3</jats:sub> exhibits an ultrahigh capacity of 1,023 mAh g<jats:sup>−1</jats:sup> at 0.2 A g<jats:sup>−1</jats:sup> and excellent cycling performance (≈100% capacity retention after 4 200 cycles at 10 A g<jats:sup>−1</jats:sup>), far outperforming those metal thiophosphates anodes reported for SIBs. Interestingly, in situ and ex situ characterizations reveal a quasi‐topological intercalation mechanism of DIPA‐MnPS<jats:sub>3</jats:sub>. This work provides a novel strategy for the design of high‐performance anode materials for SIBs.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406328\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
层状过渡金属三硫代磷酸盐(TMPS3,TM = Mn、Fe、Co 等)具有很高的理论容量(1 300 mAh g-1),是钠离子电池(SIB)的潜在阳极材料。然而,TMPS3 中 P2 二聚体与 S 原子间的强键阻碍了 P2 二聚体与 Na+ 之间的有效合金化反应,导致实际容量远低于理论值。本文首次在 MnPS3 中插层了极性分子二异丙基胺(DIPA),从而有效提高了钠的存储性能。理论计算表明,DIPA 和 MnPS3 之间的电子转移诱导了更多的脱局域 S p 态和更弱的 P─S 键,显著提高了电化学活性和钠化/解钠反应动力学。此外,层间间距从 6.48 Å 扩大到 10.75 Å,使得 Na+ 扩散更快,Na+ 吸附的活性位点更多。正如预期的那样,DIPA-MnPS3 在 0.2 A g-1 的条件下表现出 1,023 mAh g-1 的超高容量和卓越的循环性能(在 10 A g-1 条件下循环 4 200 次后容量保持率≈100%),远远超过了已报道的用于 SIB 的金属硫代磷酸盐阳极。有趣的是,原位和非原位表征揭示了 DIPA-MnPS3 的准拓扑插层机制。这项工作为设计用于 SIB 的高性能阳极材料提供了一种新策略。
Polar Molecule Intercalation to Weaken P2─S Bonding in MnPS3 Toward Ultrahigh‐Capacity Sodium Storage
Layered transition metal trithiophosphates (TMPS3, TM = Mn, Fe, Co, etc.) with high theoretical capacity (>1 300 mAh g−1) are potential anode materials for sodium‐ion batteries (SIBs). However, the strong bonding between P2 dimers and S atoms in TMPS3 hinders the efficient alloying reaction between P2 dimers and Na+, resulting in practical capacities much lower than theoretical values. Herein, a polar molecule diisopropylamine (DIPA) is intercalated into MnPS3 for the first time to improve the sodium storage performance effectively. Theoretical calculations show that the electron transfer between DIPA and MnPS3 induces more delocalized S p states and weaker P─S bonds, significantly enhancing the electrochemical activity and sodiation/desodiation reaction kinetics. Moreover, the expanded interlayer spacing from 6.48 to 10.75 Å enables faster Na+ diffusion and more active sites for Na+ adsorption. As expected, the DIPA‐MnPS3 exhibits an ultrahigh capacity of 1,023 mAh g−1 at 0.2 A g−1 and excellent cycling performance (≈100% capacity retention after 4 200 cycles at 10 A g−1), far outperforming those metal thiophosphates anodes reported for SIBs. Interestingly, in situ and ex situ characterizations reveal a quasi‐topological intercalation mechanism of DIPA‐MnPS3. This work provides a novel strategy for the design of high‐performance anode materials for SIBs.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.