基于斑状聚合物胶束的热诱导胶凝系统

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-16 DOI:10.1002/adfm.202417544
Binru Han, Shota Fujii, André J. van der Vlies, Masoud Ghasemi, Joshua T. Del Mundo, Sarah N. Kiemle, Esther W. Gomez, Enrique D. Gomez, Ralph H. Colby, Urara Hasegawa
{"title":"基于斑状聚合物胶束的热诱导胶凝系统","authors":"Binru Han, Shota Fujii, André J. van der Vlies, Masoud Ghasemi, Joshua T. Del Mundo, Sarah N. Kiemle, Esther W. Gomez, Enrique D. Gomez, Ralph H. Colby, Urara Hasegawa","doi":"10.1002/adfm.202417544","DOIUrl":null,"url":null,"abstract":"Thermogels that exhibit a sol‐gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(<jats:italic>N</jats:italic>‐acryloylmorpholine)‐<jats:italic>b</jats:italic>‐poly(<jats:italic>N</jats:italic>‐benzylacrylamide) (PAM‐PBzAM) and poly (<jats:italic>N</jats:italic>‐isopropyl acrylamide)‐<jats:italic>b</jats:italic>‐poly(<jats:italic>N</jats:italic>‐benzylacrylamide) (PNIPAM‐PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self‐assembled into mixed shell micelles having a phase‐separated shell with PAM‐ and PNIPAM‐rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic‐to‐hydrophobic transition to induce intermicellar assembly into entangled worm‐like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter‐micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"6 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles\",\"authors\":\"Binru Han, Shota Fujii, André J. van der Vlies, Masoud Ghasemi, Joshua T. Del Mundo, Sarah N. Kiemle, Esther W. Gomez, Enrique D. Gomez, Ralph H. Colby, Urara Hasegawa\",\"doi\":\"10.1002/adfm.202417544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermogels that exhibit a sol‐gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(<jats:italic>N</jats:italic>‐acryloylmorpholine)‐<jats:italic>b</jats:italic>‐poly(<jats:italic>N</jats:italic>‐benzylacrylamide) (PAM‐PBzAM) and poly (<jats:italic>N</jats:italic>‐isopropyl acrylamide)‐<jats:italic>b</jats:italic>‐poly(<jats:italic>N</jats:italic>‐benzylacrylamide) (PNIPAM‐PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self‐assembled into mixed shell micelles having a phase‐separated shell with PAM‐ and PNIPAM‐rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic‐to‐hydrophobic transition to induce intermicellar assembly into entangled worm‐like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter‐micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417544\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417544","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在体温下呈现溶胶-凝胶转变的热凝胶是一类很有前景的可注射生物材料,可用于生物医学领域。迄今报道的热凝胶一般由两亲嵌段共聚物胶束组成,具有各向同性的热敏表面,在加热时可诱导细胞间聚集。尽管这些水凝胶前景广阔,但由于其无法控制的聚集导致空隙形成,因此机械强度较低。为了更好地控制细胞间的聚集,本文提出了一种新颖的热凝胶设计概念,这种概念基于带有多个热敏表面域的斑块状聚合物胶束。这些结构域可作为 "补丁",在胶束之间架起桥梁,形成渗滤网络结构。斑块状胶束由两性嵌段共聚物的二元混合物制备而成:聚(N-丙烯酰吗啉)-b-聚(N-苄基丙烯酰胺)(PAM-PBzAM)和聚(N-异丙基丙烯酰胺)-b-聚(N-苄基丙烯酰胺)(PNIPAM-PBzAM),其中 PBzAM、PAM 和 PNIPAM 分别是疏水、亲水和热敏嵌段。在 25 ℃ 时,聚合物自组装成混合壳胶束,具有富含 PAM 和 PNIPAM 结构域的相分离外壳。在 37 °C 时,PNIPAM 结构域发生亲水到疏水的转变,诱导胶束间组装成纠缠的蠕虫状结构,从而形成水凝胶。斑块状胶束形成了无空隙的均匀网络结构。胶束的设计对水凝胶的胶束间组装、热凝行为和机械性能有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
Thermogels that exhibit a sol‐gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(N‐acryloylmorpholine)‐b‐poly(N‐benzylacrylamide) (PAM‐PBzAM) and poly (N‐isopropyl acrylamide)‐b‐poly(N‐benzylacrylamide) (PNIPAM‐PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self‐assembled into mixed shell micelles having a phase‐separated shell with PAM‐ and PNIPAM‐rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic‐to‐hydrophobic transition to induce intermicellar assembly into entangled worm‐like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter‐micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Versatile Foldable Inkjet‐Printed Thermoacoustic Loudspeaker on Paper Self‐Healing and Stretchable Molecular Ferroelectrics with High Expandability Stress‐Relieving Protective Elastomeric Interphase for Stable Ni‐rich Cathodes In Vivo Screening of Barcoded Gold Nanoparticles Elucidates the Influence of Shapes for Tumor Targeting Surface Electric Dipole Moment Engineering of All‐Inorganic Transparent Solid Matrix for Information Encryption and X‐Ray Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1