Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering
{"title":"利用有监督的对比学习进行组织病理学图像分类的广义深度学习","authors":"Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering","doi":"10.1016/j.jare.2024.11.013","DOIUrl":null,"url":null,"abstract":"<h3><strong>Introduction:</strong></h3>Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.<h3><strong>Objectives:</strong></h3>The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.<h3><strong>Methods:</strong></h3>HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.<h3><strong>Results:</strong></h3>HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.<h3><strong>Conclusion:</strong></h3>HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub<!-- --> <!-- -->footnote<span><span>https://github.com/placeholder-link</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>..","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Deep Learning for Histopathology Image Classification Using Supervised Contrastive Learning\",\"authors\":\"Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering\",\"doi\":\"10.1016/j.jare.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3><strong>Introduction:</strong></h3>Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.<h3><strong>Objectives:</strong></h3>The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.<h3><strong>Methods:</strong></h3>HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.<h3><strong>Results:</strong></h3>HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.<h3><strong>Conclusion:</strong></h3>HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub<!-- --> <!-- -->footnote<span><span>https://github.com/placeholder-link</span><svg aria-label=\\\"Opens in new window\\\" focusable=\\\"false\\\" height=\\\"20\\\" viewbox=\\\"0 0 8 8\\\"><path d=\\\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\\\"></path></svg></span>..\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.11.013\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.11.013","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Generalized Deep Learning for Histopathology Image Classification Using Supervised Contrastive Learning
Introduction:
Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.
Objectives:
The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.
Methods:
HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.
Results:
HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.
Conclusion:
HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub footnotehttps://github.com/placeholder-link..
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.