利用有监督的对比学习进行组织病理学图像分类的广义深度学习

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2024-11-16 DOI:10.1016/j.jare.2024.11.013
Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering
{"title":"利用有监督的对比学习进行组织病理学图像分类的广义深度学习","authors":"Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering","doi":"10.1016/j.jare.2024.11.013","DOIUrl":null,"url":null,"abstract":"<h3><strong>Introduction:</strong></h3>Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.<h3><strong>Objectives:</strong></h3>The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.<h3><strong>Methods:</strong></h3>HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.<h3><strong>Results:</strong></h3>HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.<h3><strong>Conclusion:</strong></h3>HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub<!-- --> <!-- -->footnote<span><span>https://github.com/placeholder-link</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>..","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Deep Learning for Histopathology Image Classification Using Supervised Contrastive Learning\",\"authors\":\"Md Mamunur Rahaman, Ewan K.A. Millar, Erik Meijering\",\"doi\":\"10.1016/j.jare.2024.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3><strong>Introduction:</strong></h3>Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.<h3><strong>Objectives:</strong></h3>The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.<h3><strong>Methods:</strong></h3>HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.<h3><strong>Results:</strong></h3>HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.<h3><strong>Conclusion:</strong></h3>HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub<!-- --> <!-- -->footnote<span><span>https://github.com/placeholder-link</span><svg aria-label=\\\"Opens in new window\\\" focusable=\\\"false\\\" height=\\\"20\\\" viewbox=\\\"0 0 8 8\\\"><path d=\\\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\\\"></path></svg></span>..\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.11.013\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.11.013","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

导言:癌症是导致全球死亡的主要原因,因此需要有效的诊断工具来进行早期检测和治疗。组织病理学图像分析对癌症诊断至关重要,但往往受到人为错误和可变性的阻碍。本研究介绍了一种为组织病理学图像分类设计的混合网络--HistopathAI,旨在提高临床病理学诊断的精确度和效率。方法:HistopathAI 整合了来自 EfficientNetB3 和 ResNet50 的特征,使用 HDFF 提供组织病理学图像的丰富表示。该框架采用了一种顺序方法,从特征学习过渡到分类器学习,反映了对比学习的本质,目的是产生卓越的特征表示。该模型将用于特征表示的 SCL 与用于分类的交叉熵(CE)损失相结合。结果:HistopathAI在所有数据集上都达到了最先进的分类准确率,在二元分类和多分类任务中都表现出了卓越的性能。统计测试证实,HistopathAI的性能明显优于基线模型,确保了稳健可靠的改进。结论:HistopathAI为组织病理学图像分类提供了一个稳健的工具,提高了诊断准确性,支持了向数字病理学的过渡。该框架有望改善癌症诊断和患者预后,为更广泛的临床应用铺平道路。代码可从 GitHub footnotehttps://github.com/placeholder-link 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized Deep Learning for Histopathology Image Classification Using Supervised Contrastive Learning

Introduction:

Cancer is a leading cause of death worldwide, necessitating effective diagnostic tools for early detection and treatment. Histopathological image analysis is crucial for cancer diagnosis but is often hindered by human error and variability. This study introduces HistopathAI, a hybrid network designed for histopathology image classification, aimed at enhancing diagnostic precision and efficiency in clinical pathology.

Objectives:

The primary goal of this study is to demonstrate that HistopathAI, leveraging supervised contrastive learning (SCL) and hybrid deep feature fusion (HDFF), can significantly improve the accuracy of histopathological image classification, including scenarios involving imbalanced datasets.

Methods:

HistopathAI integrates features from EfficientNetB3 and ResNet50, using HDFF to provide a rich representation of histopathology images. The framework employs a sequential methodology, transitioning from feature learning to classifier learning, mirroring the essence of contrastive learning with the aim of producing superior feature representations. The model combines SCL for feature representation with cross-entropy (CE) loss for classification. We evaluated HistopathAI across seven publicly available datasets and one private dataset, covering various histopathology domains.

Results:

HistopathAI achieved state-of-the-art classification accuracy across all datasets, demonstrating superior performance in both binary and multiclass classification tasks. Statistical testing confirmed that HistopathAI’s performance is significantly better than baseline models, ensuring robust and reliable improvements.

Conclusion:

HistopathAI offers a robust tool for histopathology image classification, enhancing diagnostic accuracy and supporting the transition to digital pathology. This framework has the potential to improve cancer diagnosis and patient outcomes, paving the way for broader clinical application. The code is available from GitHub footnotehttps://github.com/placeholder-link..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
Glycyrrhiza, a commonly used medicinal herb: Review of species classification, pharmacology, active ingredient biosynthesis, and synthetic biology Attention Over Vulnerable Brain Regions Associating Cerebral Palsy Disorder and Biological Markers Generalized Deep Learning for Histopathology Image Classification Using Supervised Contrastive Learning An efficient discrete Chebyshev polynomials strategy for tempered time fractional nonlinear Schrödinger problems Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1