私密安全的分布式深度学习:调查

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-11-16 DOI:10.1145/3703452
Corinne Allaart, Saba Amiri, Henri Bal, Adam Belloum, Leon Gommans, Aart van Halteren, Sander Klous
{"title":"私密安全的分布式深度学习:调查","authors":"Corinne Allaart, Saba Amiri, Henri Bal, Adam Belloum, Leon Gommans, Aart van Halteren, Sander Klous","doi":"10.1145/3703452","DOIUrl":null,"url":null,"abstract":"Traditionally, deep learning practitioners would bring data into a central repository for model training and inference. Recent developments in distributed learning, such as federated learning and deep learning as a service (DLaaS) do not require centralized data and instead push computing to where the distributed datasets reside. These decentralized training schemes, however, introduce additional security and privacy challenges. This survey first structures the field of distributed learning into two main paradigms and then provides an overview of the recently published protective measures for each. This work highlights both secure training methods as well as private inference measures. Our analyses show that recent publications while being highly dependent on the problem definition, report progress in terms of security, privacy, and efficiency. Nevertheless, we also identify several current issues within the private and secure distributed deep learning (PSDDL) field that require more research. We discuss these issues and provide a general overview of how they might be resolved.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"165 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Private and Secure Distributed Deep Learning: A Survey\",\"authors\":\"Corinne Allaart, Saba Amiri, Henri Bal, Adam Belloum, Leon Gommans, Aart van Halteren, Sander Klous\",\"doi\":\"10.1145/3703452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, deep learning practitioners would bring data into a central repository for model training and inference. Recent developments in distributed learning, such as federated learning and deep learning as a service (DLaaS) do not require centralized data and instead push computing to where the distributed datasets reside. These decentralized training schemes, however, introduce additional security and privacy challenges. This survey first structures the field of distributed learning into two main paradigms and then provides an overview of the recently published protective measures for each. This work highlights both secure training methods as well as private inference measures. Our analyses show that recent publications while being highly dependent on the problem definition, report progress in terms of security, privacy, and efficiency. Nevertheless, we also identify several current issues within the private and secure distributed deep learning (PSDDL) field that require more research. We discuss these issues and provide a general overview of how they might be resolved.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3703452\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3703452","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

传统上,深度学习从业者会将数据导入中央存储库,进行模型训练和推理。分布式学习的最新发展,如联合学习和深度学习即服务(DLaaS),不需要集中数据,而是将计算推向分布式数据集所在的地方。然而,这些分散式训练方案带来了额外的安全和隐私挑战。本调查报告首先将分布式学习领域划分为两个主要范式,然后概述了最近发布的针对每个范式的保护措施。这项工作既强调了安全训练方法,也强调了隐私推断措施。我们的分析表明,近期发表的论文虽然高度依赖于问题的定义,但在安全性、隐私性和效率方面都取得了进展。不过,我们也发现了当前在私有和安全分布式深度学习(PSDDL)领域中需要进一步研究的几个问题。我们将讨论这些问题,并概述如何解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Private and Secure Distributed Deep Learning: A Survey
Traditionally, deep learning practitioners would bring data into a central repository for model training and inference. Recent developments in distributed learning, such as federated learning and deep learning as a service (DLaaS) do not require centralized data and instead push computing to where the distributed datasets reside. These decentralized training schemes, however, introduce additional security and privacy challenges. This survey first structures the field of distributed learning into two main paradigms and then provides an overview of the recently published protective measures for each. This work highlights both secure training methods as well as private inference measures. Our analyses show that recent publications while being highly dependent on the problem definition, report progress in terms of security, privacy, and efficiency. Nevertheless, we also identify several current issues within the private and secure distributed deep learning (PSDDL) field that require more research. We discuss these issues and provide a general overview of how they might be resolved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Collaborative Distributed Machine Learning Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review Private and Secure Distributed Deep Learning: A Survey Backdoor Attacks and Defenses Targeting Multi-Domain AI Models: A Comprehensive Review Systematic Review of Generative Modelling Tools and Utility Metrics for Fully Synthetic Tabular Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1