{"title":"用于提高碳纤维润湿性和纤维/环氧树脂复合材料界面粘附性的超支化生物基水性施胶涂料","authors":"Xin Song , Chao Zhou , Li Liu , Guangfeng Wu","doi":"10.1016/j.polymer.2024.127852","DOIUrl":null,"url":null,"abstract":"<div><div>Novel castor oil-based waterborne polyurethane (CWPU) sizing coatings prepared by replacing traditional petroleum-based petrochemical products with natural renewable bio-extracts are attracting the attentions in the carbon fibre (CF) reinforced epoxy (EP) composites industries. However, CWPU coatings prepared using only castor oil (CO), diisocyanate, and carboxylate hydrophilic chain extender suffer from poor thermal stability, insufficient mechanical strength and weak adhesion. For enhancing the thermo-mechanical properties of CWPU coatings, as well as the surface wettability and interfacial adhesion to the substrates when serving as fibre sizing coatings and as interphases of the CF/EP composites, a compound cross-linker with tri-acrylate branched and tri-isocyanate chain-endings was synthesized and used to prepare hyperbranched CWPU with CO-acrylate-isocyanate interpenetrating cross-linking networks. CWPU coatings revealed favourable thermodynamic performance achieving a T5% decomposition temperature and toughness of 271.8 °C and 36.2 MJ/m<sup>3</sup>. CWPU coatings imparted excellent wettability to CF through oxygen-containing polar groups and synergy between covalent/hydrogen bonding, resulting in an increase in fibre surface energy to 61.0 mN/m. Stable and robust interphases were constructed in the CF/EP composites by CWPU coatings through \"polar similarity compatibility\" and multiple physico-chemical reactions. The flexural modulus, interlaminar shear strength, and interfacial shear strength of CWPU-CF/EP were increased by 54.8 %, 36.6 %, and 58.9 %, respectively, compared with those of the unsized CF/EP composites. The research contributes to the development and industrial production of high-performance, eco-friendly bio-based water soluble organic coatings.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127852"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbranched bio-based waterborne sizing coating for enhancing the wettability of carbon fibre and interfacial adhesion of fibre/epoxy composites\",\"authors\":\"Xin Song , Chao Zhou , Li Liu , Guangfeng Wu\",\"doi\":\"10.1016/j.polymer.2024.127852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel castor oil-based waterborne polyurethane (CWPU) sizing coatings prepared by replacing traditional petroleum-based petrochemical products with natural renewable bio-extracts are attracting the attentions in the carbon fibre (CF) reinforced epoxy (EP) composites industries. However, CWPU coatings prepared using only castor oil (CO), diisocyanate, and carboxylate hydrophilic chain extender suffer from poor thermal stability, insufficient mechanical strength and weak adhesion. For enhancing the thermo-mechanical properties of CWPU coatings, as well as the surface wettability and interfacial adhesion to the substrates when serving as fibre sizing coatings and as interphases of the CF/EP composites, a compound cross-linker with tri-acrylate branched and tri-isocyanate chain-endings was synthesized and used to prepare hyperbranched CWPU with CO-acrylate-isocyanate interpenetrating cross-linking networks. CWPU coatings revealed favourable thermodynamic performance achieving a T5% decomposition temperature and toughness of 271.8 °C and 36.2 MJ/m<sup>3</sup>. CWPU coatings imparted excellent wettability to CF through oxygen-containing polar groups and synergy between covalent/hydrogen bonding, resulting in an increase in fibre surface energy to 61.0 mN/m. Stable and robust interphases were constructed in the CF/EP composites by CWPU coatings through \\\"polar similarity compatibility\\\" and multiple physico-chemical reactions. The flexural modulus, interlaminar shear strength, and interfacial shear strength of CWPU-CF/EP were increased by 54.8 %, 36.6 %, and 58.9 %, respectively, compared with those of the unsized CF/EP composites. The research contributes to the development and industrial production of high-performance, eco-friendly bio-based water soluble organic coatings.</div></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"315 \",\"pages\":\"Article 127852\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124011881\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011881","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Hyperbranched bio-based waterborne sizing coating for enhancing the wettability of carbon fibre and interfacial adhesion of fibre/epoxy composites
Novel castor oil-based waterborne polyurethane (CWPU) sizing coatings prepared by replacing traditional petroleum-based petrochemical products with natural renewable bio-extracts are attracting the attentions in the carbon fibre (CF) reinforced epoxy (EP) composites industries. However, CWPU coatings prepared using only castor oil (CO), diisocyanate, and carboxylate hydrophilic chain extender suffer from poor thermal stability, insufficient mechanical strength and weak adhesion. For enhancing the thermo-mechanical properties of CWPU coatings, as well as the surface wettability and interfacial adhesion to the substrates when serving as fibre sizing coatings and as interphases of the CF/EP composites, a compound cross-linker with tri-acrylate branched and tri-isocyanate chain-endings was synthesized and used to prepare hyperbranched CWPU with CO-acrylate-isocyanate interpenetrating cross-linking networks. CWPU coatings revealed favourable thermodynamic performance achieving a T5% decomposition temperature and toughness of 271.8 °C and 36.2 MJ/m3. CWPU coatings imparted excellent wettability to CF through oxygen-containing polar groups and synergy between covalent/hydrogen bonding, resulting in an increase in fibre surface energy to 61.0 mN/m. Stable and robust interphases were constructed in the CF/EP composites by CWPU coatings through "polar similarity compatibility" and multiple physico-chemical reactions. The flexural modulus, interlaminar shear strength, and interfacial shear strength of CWPU-CF/EP were increased by 54.8 %, 36.6 %, and 58.9 %, respectively, compared with those of the unsized CF/EP composites. The research contributes to the development and industrial production of high-performance, eco-friendly bio-based water soluble organic coatings.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.