通过酸催化低聚物实验驱动模型优化可持续航空燃料生产

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-15 DOI:10.1021/acssuschemeng.4c08240
Florent J. Dubray, Vladimir Paunovic, Jeroen A. van Bokhoven
{"title":"通过酸催化低聚物实验驱动模型优化可持续航空燃料生产","authors":"Florent J. Dubray, Vladimir Paunovic, Jeroen A. van Bokhoven","doi":"10.1021/acssuschemeng.4c08240","DOIUrl":null,"url":null,"abstract":"To reduce the aviation industry’s greenhouse gas emissions, sustainable aviation fuel (SAF) is needed. Therefore, a methanol-to-SAF process comprising (i) methanol to olefin (MTO), (ii) olefin oligomerization, and (iii) olefin hydrogenation reaction steps is a promising route. The olefin oligomerization step is responsible for resulting SAF properties and needs to be optimized in concert with the previous MTO step. For this purpose, a kinetic model using a total of seven kinetic parameters was designed from a limited number of experimental measurements, allowing us to successfully describe the oligomerization reactivity of various olefin mixtures over an acid catalyst in flow. This inexpensive model predicted optimal reaction conditions and feed compositions, resulting in product mixtures with properties matching those of conventional Jet-A1 aviation fuel. To maximize SAF-range products, a feed composed of C<sub>4</sub> and C<sub>5</sub> olefins is most desirable, while controlled C<sub>3</sub>, C<sub>6</sub>, and C<sub>7</sub> olefin cofeeding and C<sub>4</sub>/C<sub>5</sub> olefin feed ratio are required to finely tune the SAF product composition. This modeling approach allows for efficient process optimization directed toward the synthesis of SAF with controlled properties and composition. Additionally, precise MTO–olefin compositions can be predicted for the optimal production of high-quality SAF, pointing toward the development of an efficient overall methanol-to-SAF process.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"21 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Sustainable Aviation Fuel Production through Experiment-Driven Modeling of Acid-Catalyzed Oligomerization\",\"authors\":\"Florent J. Dubray, Vladimir Paunovic, Jeroen A. van Bokhoven\",\"doi\":\"10.1021/acssuschemeng.4c08240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the aviation industry’s greenhouse gas emissions, sustainable aviation fuel (SAF) is needed. Therefore, a methanol-to-SAF process comprising (i) methanol to olefin (MTO), (ii) olefin oligomerization, and (iii) olefin hydrogenation reaction steps is a promising route. The olefin oligomerization step is responsible for resulting SAF properties and needs to be optimized in concert with the previous MTO step. For this purpose, a kinetic model using a total of seven kinetic parameters was designed from a limited number of experimental measurements, allowing us to successfully describe the oligomerization reactivity of various olefin mixtures over an acid catalyst in flow. This inexpensive model predicted optimal reaction conditions and feed compositions, resulting in product mixtures with properties matching those of conventional Jet-A1 aviation fuel. To maximize SAF-range products, a feed composed of C<sub>4</sub> and C<sub>5</sub> olefins is most desirable, while controlled C<sub>3</sub>, C<sub>6</sub>, and C<sub>7</sub> olefin cofeeding and C<sub>4</sub>/C<sub>5</sub> olefin feed ratio are required to finely tune the SAF product composition. This modeling approach allows for efficient process optimization directed toward the synthesis of SAF with controlled properties and composition. Additionally, precise MTO–olefin compositions can be predicted for the optimal production of high-quality SAF, pointing toward the development of an efficient overall methanol-to-SAF process.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.4c08240\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08240","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为减少航空业的温室气体排放,需要可持续航空燃料(SAF)。因此,由 (i) 甲醇制烯烃 (MTO)、(ii) 烯烃低聚和 (iii) 烯烃加氢反应步骤组成的甲醇制 SAF 工艺是一条很有前景的路线。烯烃低聚反应步骤决定了 SAF 的性能,需要与之前的甲醇制烯烃(MTO)步骤协同优化。为此,我们根据有限的实验测量数据设计了一个动力学模型,共使用了七个动力学参数,从而成功地描述了各种烯烃混合物在酸催化剂上的流动低聚反应性。这一廉价模型预测了最佳反应条件和进料成分,使产品混合物具有与传统 Jet-A1 航空燃料相匹配的特性。为了最大限度地获得 SAF 系列产品,最理想的进料成分是 C4 和 C5 烯烃,同时需要控制 C3、C6 和 C7 烯烃的共进料和 C4/C5 烯烃的进料比,以微调 SAF 产品成分。这种建模方法可实现高效的工艺优化,以合成具有可控性质和成分的 SAF。此外,精确的 MTO 烯烃成分可以预测出高质量 SAF 的最佳产量,从而指向高效的甲醇-SAF 整体工艺的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Sustainable Aviation Fuel Production through Experiment-Driven Modeling of Acid-Catalyzed Oligomerization
To reduce the aviation industry’s greenhouse gas emissions, sustainable aviation fuel (SAF) is needed. Therefore, a methanol-to-SAF process comprising (i) methanol to olefin (MTO), (ii) olefin oligomerization, and (iii) olefin hydrogenation reaction steps is a promising route. The olefin oligomerization step is responsible for resulting SAF properties and needs to be optimized in concert with the previous MTO step. For this purpose, a kinetic model using a total of seven kinetic parameters was designed from a limited number of experimental measurements, allowing us to successfully describe the oligomerization reactivity of various olefin mixtures over an acid catalyst in flow. This inexpensive model predicted optimal reaction conditions and feed compositions, resulting in product mixtures with properties matching those of conventional Jet-A1 aviation fuel. To maximize SAF-range products, a feed composed of C4 and C5 olefins is most desirable, while controlled C3, C6, and C7 olefin cofeeding and C4/C5 olefin feed ratio are required to finely tune the SAF product composition. This modeling approach allows for efficient process optimization directed toward the synthesis of SAF with controlled properties and composition. Additionally, precise MTO–olefin compositions can be predicted for the optimal production of high-quality SAF, pointing toward the development of an efficient overall methanol-to-SAF process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Enhanced Glucan–Chitin Complex Extraction from Deoiled Yeast Biomass for Sustainable Biorefinery Applications Integrated Recycling of Red Mud for Iron Ore Sinter Manufacturing: Interfacial Bonding Regulation of the Sintering Process Design Development of Integrated Methane Pyrolysis and Reforming Processes for Low-Carbon Urea Production La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2 Enhancing Photocatalytic Hydrogen Production from Single S. oneidensis MR-1/CdS Biohybrid System via Optimized Electron Transport at the Bioabiotic Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1