{"title":"高伽马频率闪光刺激可能促进大鼠幼崽的认知能力","authors":"Yu Fu, Qingfeng Zhai","doi":"10.1016/j.brainres.2024.149314","DOIUrl":null,"url":null,"abstract":"<p><p>High-gamma frequency flashes can enhance cognition by synchronizing neural oscillations in mammals. Early flash treatment promotes the development of improved cognitive functions in young children. However, it is unclear whether exposure to high-gamma frequency flashes in preschool-aged individuals affects cognition in preadolescents by regulating neural oscillations in the brain. Here, we aimed to investigate the effects of gamma-frequency flashes on cognitive ability. In this study, the effect of high-frequency flicker on cognitive performance was verified by behavioural experiments such as the open-field test and the water maze, but also proteomics. We found that external 40 Hz and 70 Hz frequency flashes synchronized neural oscillations at the corresponding frequencies in the primary visual cortex (V1) of rats. Rats that underwent 70 Hz flash intervention had better cognitive behavioural performance in the early stages of training. The 70 Hz flash frequency upregulated proteins associated with neuronal growth and differentiation, such as Snapin, FoxO3, Hspa12a, and Penk, and activated the MAPK signalling pathway, signalling pathway regulating stem cell pluripotency, and the neuroactive ligand-receptor interaction pathway. These proteins and pathways play important roles in cognitive functions. Our study revealed that 70 Hz flashes received by young children early in their development substantially promote the growth of cognitive capabilities in the brain. Exposure to 70 Hz flashes may be a new intervention method and a new strategy for improving cognition.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149314"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-gamma frequency flash stimulation as a possible cognitive facilitator in rat pups.\",\"authors\":\"Yu Fu, Qingfeng Zhai\",\"doi\":\"10.1016/j.brainres.2024.149314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-gamma frequency flashes can enhance cognition by synchronizing neural oscillations in mammals. Early flash treatment promotes the development of improved cognitive functions in young children. However, it is unclear whether exposure to high-gamma frequency flashes in preschool-aged individuals affects cognition in preadolescents by regulating neural oscillations in the brain. Here, we aimed to investigate the effects of gamma-frequency flashes on cognitive ability. In this study, the effect of high-frequency flicker on cognitive performance was verified by behavioural experiments such as the open-field test and the water maze, but also proteomics. We found that external 40 Hz and 70 Hz frequency flashes synchronized neural oscillations at the corresponding frequencies in the primary visual cortex (V1) of rats. Rats that underwent 70 Hz flash intervention had better cognitive behavioural performance in the early stages of training. The 70 Hz flash frequency upregulated proteins associated with neuronal growth and differentiation, such as Snapin, FoxO3, Hspa12a, and Penk, and activated the MAPK signalling pathway, signalling pathway regulating stem cell pluripotency, and the neuroactive ligand-receptor interaction pathway. These proteins and pathways play important roles in cognitive functions. Our study revealed that 70 Hz flashes received by young children early in their development substantially promote the growth of cognitive capabilities in the brain. Exposure to 70 Hz flashes may be a new intervention method and a new strategy for improving cognition.</p>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\" \",\"pages\":\"149314\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.brainres.2024.149314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2024.149314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
High-gamma frequency flash stimulation as a possible cognitive facilitator in rat pups.
High-gamma frequency flashes can enhance cognition by synchronizing neural oscillations in mammals. Early flash treatment promotes the development of improved cognitive functions in young children. However, it is unclear whether exposure to high-gamma frequency flashes in preschool-aged individuals affects cognition in preadolescents by regulating neural oscillations in the brain. Here, we aimed to investigate the effects of gamma-frequency flashes on cognitive ability. In this study, the effect of high-frequency flicker on cognitive performance was verified by behavioural experiments such as the open-field test and the water maze, but also proteomics. We found that external 40 Hz and 70 Hz frequency flashes synchronized neural oscillations at the corresponding frequencies in the primary visual cortex (V1) of rats. Rats that underwent 70 Hz flash intervention had better cognitive behavioural performance in the early stages of training. The 70 Hz flash frequency upregulated proteins associated with neuronal growth and differentiation, such as Snapin, FoxO3, Hspa12a, and Penk, and activated the MAPK signalling pathway, signalling pathway regulating stem cell pluripotency, and the neuroactive ligand-receptor interaction pathway. These proteins and pathways play important roles in cognitive functions. Our study revealed that 70 Hz flashes received by young children early in their development substantially promote the growth of cognitive capabilities in the brain. Exposure to 70 Hz flashes may be a new intervention method and a new strategy for improving cognition.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.