帕潘立酮(Paliperidone-loaded)鼻脑靶向 NLCS:用于精神分裂症的优化、评估、组织病理学和药代动力学估算。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-16 DOI:10.1080/02652048.2024.2426545
Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan
{"title":"帕潘立酮(Paliperidone-loaded)鼻脑靶向 NLCS:用于精神分裂症的优化、评估、组织病理学和药代动力学估算。","authors":"Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan","doi":"10.1080/02652048.2024.2426545","DOIUrl":null,"url":null,"abstract":"<p><p>Study was to develop a nanostructured-lipid-careers (NLCs) of paliperidone (PLP) for nose-to-brain targeting. NLCs was prepared by sonication, high-shear homogenisation method, and characterised their mean diameter, PDI, zeta-potential, morphology (by SEM, TEM and AFM), entrapment efficiency, drug loading, <i>in vitro</i> release, interaction study (by FTIR), and stability. Further, <i>ex vivo</i> permeation and ciliotoxicity performed in sheep nasal mucosa, and <i>in vivo</i> biodistribution/pharmacokinetic was performed in rats for schizophernia. Developed NLCs showed spherical and clearly 3-dimentinal structure with 129 ± 2.7 nm mean diameter, 0.304 ± 0.003 PDI, -7.61 ± 0.56 mV zeta-potential, 58.16 ± 0.17% entrapment efficiency, 65.8 ± 2% drug loading and 74.32 ± 0.003% release in 12 h, followed by Higuchi model. <i>Ex vivo</i> study showed NLCs have three times higher permeation, compare to pure drug (around 71.50.32% in 6 h) and 3.98 g/cm<sup>2</sup>/h steady sate flux. The blood/brain ratio given by intranasally have higher compare to IV route, and 94.53 ± 21.45% drug targeting efficiency in brain. In conclusion, NLCs have easily crossed BBB, higher drug delivery and effective for schizophrenia in given by intranasal.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"832-843"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia.\",\"authors\":\"Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan\",\"doi\":\"10.1080/02652048.2024.2426545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Study was to develop a nanostructured-lipid-careers (NLCs) of paliperidone (PLP) for nose-to-brain targeting. NLCs was prepared by sonication, high-shear homogenisation method, and characterised their mean diameter, PDI, zeta-potential, morphology (by SEM, TEM and AFM), entrapment efficiency, drug loading, <i>in vitro</i> release, interaction study (by FTIR), and stability. Further, <i>ex vivo</i> permeation and ciliotoxicity performed in sheep nasal mucosa, and <i>in vivo</i> biodistribution/pharmacokinetic was performed in rats for schizophernia. Developed NLCs showed spherical and clearly 3-dimentinal structure with 129 ± 2.7 nm mean diameter, 0.304 ± 0.003 PDI, -7.61 ± 0.56 mV zeta-potential, 58.16 ± 0.17% entrapment efficiency, 65.8 ± 2% drug loading and 74.32 ± 0.003% release in 12 h, followed by Higuchi model. <i>Ex vivo</i> study showed NLCs have three times higher permeation, compare to pure drug (around 71.50.32% in 6 h) and 3.98 g/cm<sup>2</sup>/h steady sate flux. The blood/brain ratio given by intranasally have higher compare to IV route, and 94.53 ± 21.45% drug targeting efficiency in brain. In conclusion, NLCs have easily crossed BBB, higher drug delivery and effective for schizophrenia in given by intranasal.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"832-843\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2024.2426545\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2426545","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种用于鼻脑靶向的帕利哌酮(PLP)纳米结构脂护理剂(NLCs)。研究采用超声和高剪切均质法制备了 NLCs,并对其平均直径、PDI、zeta 电位、形态(通过 SEM、TEM 和 AFM)、包埋效率、药物负载、体外释放、相互作用研究(通过 FTIR)和稳定性进行了表征。此外,还在绵羊鼻粘膜上进行了体外渗透和纤毛毒性研究,并在治疗精神分裂症的大鼠身上进行了体内生物分布/药代动力学研究。根据樋口模型,所开发的 NLC 呈球形,具有清晰的 3 层结构,平均直径为 129 ± 2.7 nm,PDI 为 0.304 ± 0.003,zeta 电位为 -7.61 ± 0.56 mV,夹带效率为 58.16 ± 0.17%,载药量为 65.8 ± 2%,12 小时释放率为 74.32 ± 0.003%。体内外研究表明,与纯药物相比,NLCs 的渗透率高三倍(6 小时内约为 71.50.32%),稳态通量为 3.98 g/cm2/h。与静脉注射途径相比,鼻内给药的血脑比例更高,药物在脑内的靶向效率为 94.53 ± 21.45%。总之,NLCs 很容易穿过 BBB,具有较高的给药效率,通过鼻内给药可有效治疗精神分裂症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia.

Study was to develop a nanostructured-lipid-careers (NLCs) of paliperidone (PLP) for nose-to-brain targeting. NLCs was prepared by sonication, high-shear homogenisation method, and characterised their mean diameter, PDI, zeta-potential, morphology (by SEM, TEM and AFM), entrapment efficiency, drug loading, in vitro release, interaction study (by FTIR), and stability. Further, ex vivo permeation and ciliotoxicity performed in sheep nasal mucosa, and in vivo biodistribution/pharmacokinetic was performed in rats for schizophernia. Developed NLCs showed spherical and clearly 3-dimentinal structure with 129 ± 2.7 nm mean diameter, 0.304 ± 0.003 PDI, -7.61 ± 0.56 mV zeta-potential, 58.16 ± 0.17% entrapment efficiency, 65.8 ± 2% drug loading and 74.32 ± 0.003% release in 12 h, followed by Higuchi model. Ex vivo study showed NLCs have three times higher permeation, compare to pure drug (around 71.50.32% in 6 h) and 3.98 g/cm2/h steady sate flux. The blood/brain ratio given by intranasally have higher compare to IV route, and 94.53 ± 21.45% drug targeting efficiency in brain. In conclusion, NLCs have easily crossed BBB, higher drug delivery and effective for schizophrenia in given by intranasal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Her-2 nanobody modified cisplatin nanoparticles for precise chemotherapy of colon cancer. Novel formulation of curcumin-loaded chlorhexidine drug combined with gold nanoparticles for effective therapeutic agent against urinary tract infections. Optimisation of albendazole delivery and assessment of anticancer potential in hepatocellular carcinoma (HepG2 cells) using surface modified nanostructured lipid carriers. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. Spray-dried chitosan oligosaccharide microparticles with polyvinyl alcohol-based dispersions for improved gefitinib solubility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1