双截断和区间截断竞争风险数据的累积发病率函数的非参数估计。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2024-11-17 DOI:10.1007/s10985-024-09641-y
Pao-Sheng Shen
{"title":"双截断和区间截断竞争风险数据的累积发病率函数的非参数估计。","authors":"Pao-Sheng Shen","doi":"10.1007/s10985-024-09641-y","DOIUrl":null,"url":null,"abstract":"<p><p>Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.\",\"authors\":\"Pao-Sheng Shen\",\"doi\":\"10.1007/s10985-024-09641-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09641-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09641-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

区间抽样被广泛应用于疾病登记数据的收集,这些数据通常会报告某一时间段内发生的病例。如果故障时间可以精确观测到,那么这种抽样方案就会产生双截断数据;如果故障时间已知只在一个区间内,那么这种抽样方案就会产生双截断和区间删减(DTIC)数据。在本文中,我们考虑使用从区间抽样方案中获得的双截断和区间删失竞争风险(DTIC-C)数据对累积发生函数(CIF)进行非参数估计。利用 Shen 的方法(Stat Methods Med Res 31:1157-1170, 2022b),我们首先得到了忽略失效类型的失效时间分布函数的非参数最大似然估计值(NPMLE)。利用 NPMLE,我们提出了使用 DTIC-C 数据的 CIF 非参数估计器,并建立了所提估计器的一致性。模拟研究表明,所提出的估计器在有限样本量下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.

Interval sampling is widely used for collection of disease registry data, which typically report incident cases during a certain time period. Such sampling scheme induces doubly truncated data if the failure time can be observed exactly and doubly truncated and interval censored (DTIC) data if the failure time is known only to lie within an interval. In this article, we consider nonparametric estimation of the cumulative incidence functions (CIF) using doubly-truncated and interval-censored competing risks (DTIC-C) data obtained from interval sampling scheme. Using the approach of Shen (Stat Methods Med Res 31:1157-1170, 2022b), we first obtain the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of failure time ignoring failure types. Using the NPMLE, we proposed nonparametric estimators of the CIF with DTIC-C data and establish consistency of the proposed estimators. Simulation studies show that the proposed estimator performs well for finite sample size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Conditional modeling of recurrent event data with terminal event. Optimal survival analyses with prevalent and incident patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1