依赖 ATP 的染色质重塑器在减数分裂中的作用

IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Trends in Genetics Pub Date : 2024-11-16 DOI:10.1016/j.tig.2024.10.004
Sheetal Paliwal, Partha Dey, Swarangi Tambat, Akira Shinohara, Gunjan Mehta
{"title":"依赖 ATP 的染色质重塑器在减数分裂中的作用","authors":"Sheetal Paliwal, Partha Dey, Swarangi Tambat, Akira Shinohara, Gunjan Mehta","doi":"10.1016/j.tig.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotic cells, DNA is wrapped around histone octamers to compact the genome. Although such compaction is required for the precise segregation of the genome during cell division, it restricts the DNA-protein interactions essential for several cellular processes. During meiosis, a specialized cell division process that produces gametes, several DNA-protein interactions are crucial for assembling meiosis-specific chromosome structures, meiotic recombination, chromosome segregation, and transcriptional regulation. The role of chromatin remodelers (CRs) in facilitating DNA-protein transactions during mitosis is well appreciated, whereas how they facilitate meiosis-specific processes is poorly understood. In this review, we summarize experimental evidence supporting the role of CRs in meiosis in various model systems and suggest future perspectives to advance the field.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of ATP-dependent chromatin remodelers in meiosis.\",\"authors\":\"Sheetal Paliwal, Partha Dey, Swarangi Tambat, Akira Shinohara, Gunjan Mehta\",\"doi\":\"10.1016/j.tig.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In eukaryotic cells, DNA is wrapped around histone octamers to compact the genome. Although such compaction is required for the precise segregation of the genome during cell division, it restricts the DNA-protein interactions essential for several cellular processes. During meiosis, a specialized cell division process that produces gametes, several DNA-protein interactions are crucial for assembling meiosis-specific chromosome structures, meiotic recombination, chromosome segregation, and transcriptional regulation. The role of chromatin remodelers (CRs) in facilitating DNA-protein transactions during mitosis is well appreciated, whereas how they facilitate meiosis-specific processes is poorly understood. In this review, we summarize experimental evidence supporting the role of CRs in meiosis in various model systems and suggest future perspectives to advance the field.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.10.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.10.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在真核细胞中,DNA 缠绕在组蛋白八聚体上,以压实基因组。虽然这种压实是细胞分裂过程中基因组精确分离所必需的,但它限制了一些细胞过程所必需的 DNA 蛋白相互作用。减数分裂是一种产生配子的特殊细胞分裂过程,在减数分裂过程中,DNA 与蛋白质之间的相互作用对组装减数分裂特异性染色体结构、减数分裂重组、染色体分离和转录调控至关重要。染色质重塑因子(CRs)在有丝分裂过程中促进 DNA 蛋白相互作用的作用已得到广泛认可,但它们如何促进减数分裂特异性过程却鲜为人知。在这篇综述中,我们总结了在各种模式系统中支持染色质重塑子在减数分裂中作用的实验证据,并提出了推进该领域研究的未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of ATP-dependent chromatin remodelers in meiosis.

In eukaryotic cells, DNA is wrapped around histone octamers to compact the genome. Although such compaction is required for the precise segregation of the genome during cell division, it restricts the DNA-protein interactions essential for several cellular processes. During meiosis, a specialized cell division process that produces gametes, several DNA-protein interactions are crucial for assembling meiosis-specific chromosome structures, meiotic recombination, chromosome segregation, and transcriptional regulation. The role of chromatin remodelers (CRs) in facilitating DNA-protein transactions during mitosis is well appreciated, whereas how they facilitate meiosis-specific processes is poorly understood. In this review, we summarize experimental evidence supporting the role of CRs in meiosis in various model systems and suggest future perspectives to advance the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
期刊最新文献
Cell-free DNA from clinical testing as a resource of population genetic analysis. Developmental evolution in fast-forward: insect male genital diversification. PIC-king apart PRC1-mediated repression. Why are RNA processing factors recruited to DNA double-strand breaks? Role of ATP-dependent chromatin remodelers in meiosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1