{"title":"基于改进型蛾焰算法的微电网集群优化调度","authors":"Yaping Li, Zhijun Zhang, Zhonglin Ding","doi":"10.1186/s42162-024-00418-z","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of renewable energy, microgrid cluster systems are gradually being applied. To promote the development of microgrid cluster scheduling technology, maximize economic benefits while reducing the operating cost required for microgrid scheduling, an optimized scheduling scheme is proposed by constructing a function to minimize the operating cost of microgrids. Then, chaos mutation and Gaussian mutation are applied to improve the moth-flame algorithm that easily falling into local optima. A microgrid cluster optimization scheduling model on the basis of the improved moth-flame algorithm is constructed. The experimental results showed that the operating cost in islanding mode was 4286.21 yuan after 160 iterations. After optimizing the scheduling, the operating cost was 3912.3 yuan, with a decrease of 8.7%. The improved moth-flame algorithm had a stable average loss value of 20% and an operating efficiency of 97.19% after 10–50 iterations, which was significantly higher than other intelligent algorithms. This indicates that the improved moth-flame algorithm has high reliability and effectiveness in microgrid cluster optimization scheduling. Therefore, the proposed model effectively optimizes the scheduling scheme of microgrid cluster, providing new solutions for the efficient utilization of smart grids and renewable energy in the future.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00418-z","citationCount":"0","resultStr":"{\"title\":\"Optimization scheduling of microgrid cluster based on improved moth-flame algorithm\",\"authors\":\"Yaping Li, Zhijun Zhang, Zhonglin Ding\",\"doi\":\"10.1186/s42162-024-00418-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of renewable energy, microgrid cluster systems are gradually being applied. To promote the development of microgrid cluster scheduling technology, maximize economic benefits while reducing the operating cost required for microgrid scheduling, an optimized scheduling scheme is proposed by constructing a function to minimize the operating cost of microgrids. Then, chaos mutation and Gaussian mutation are applied to improve the moth-flame algorithm that easily falling into local optima. A microgrid cluster optimization scheduling model on the basis of the improved moth-flame algorithm is constructed. The experimental results showed that the operating cost in islanding mode was 4286.21 yuan after 160 iterations. After optimizing the scheduling, the operating cost was 3912.3 yuan, with a decrease of 8.7%. The improved moth-flame algorithm had a stable average loss value of 20% and an operating efficiency of 97.19% after 10–50 iterations, which was significantly higher than other intelligent algorithms. This indicates that the improved moth-flame algorithm has high reliability and effectiveness in microgrid cluster optimization scheduling. Therefore, the proposed model effectively optimizes the scheduling scheme of microgrid cluster, providing new solutions for the efficient utilization of smart grids and renewable energy in the future.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00418-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00418-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00418-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Optimization scheduling of microgrid cluster based on improved moth-flame algorithm
With the rapid development of renewable energy, microgrid cluster systems are gradually being applied. To promote the development of microgrid cluster scheduling technology, maximize economic benefits while reducing the operating cost required for microgrid scheduling, an optimized scheduling scheme is proposed by constructing a function to minimize the operating cost of microgrids. Then, chaos mutation and Gaussian mutation are applied to improve the moth-flame algorithm that easily falling into local optima. A microgrid cluster optimization scheduling model on the basis of the improved moth-flame algorithm is constructed. The experimental results showed that the operating cost in islanding mode was 4286.21 yuan after 160 iterations. After optimizing the scheduling, the operating cost was 3912.3 yuan, with a decrease of 8.7%. The improved moth-flame algorithm had a stable average loss value of 20% and an operating efficiency of 97.19% after 10–50 iterations, which was significantly higher than other intelligent algorithms. This indicates that the improved moth-flame algorithm has high reliability and effectiveness in microgrid cluster optimization scheduling. Therefore, the proposed model effectively optimizes the scheduling scheme of microgrid cluster, providing new solutions for the efficient utilization of smart grids and renewable energy in the future.