{"title":"爱因斯坦引力中的新型卡西米尔虫洞","authors":"Mohammad Reza Mehdizadeh, Amir Hadi Ziaie","doi":"10.1140/epjp/s13360-024-05801-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of General Relativity (GR), violation of the null energy condition (NEC) is necessary for existence of static spherically symmetric wormhole solutions. Also, it is a well-known fact that the energy conditions are violated by certain quantum fields, such as the Casimir effect. The magnitude and sign of the Casimir energy depend on Dirichlet or Neumann boundary conditions and geometrical configuration of the objects involved in a Casimir setup. The Casimir energy may act as an ideal candidate for the matter that supports the wormhole geometry. In the present work, we firstly find traversable wormhole solutions supported by a general form for the Casimir energy density assuming a constant redshift function. As well, in this framework, assuming that the radial pressure and energy density obey a linear equation of state, we derive for the first time Casimir traversable wormhole solutions admitting suitable shape function. Then, we consider three geometric configurations of the Casimir effect such as (i) two parallel plates, (ii) two parallel cylindrical shells, and (iii) two spheres. We study wormhole solutions for each case and their property in detail. We also check the weak and strong energy conditions in the spacetime for the obtained wormhole solutions. The stability of the Casimir traversable wormhole solutions are investigated using the Tolman-Oppenheimer-Volkoff (TOV) equation. Finally, we study trajectory of null as well as timelike particles along with quasi-normal modes (QNMs) of a scalar field in the wormhole spacetime.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Casimir wormholes in Einstein gravity\",\"authors\":\"Mohammad Reza Mehdizadeh, Amir Hadi Ziaie\",\"doi\":\"10.1140/epjp/s13360-024-05801-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of General Relativity (GR), violation of the null energy condition (NEC) is necessary for existence of static spherically symmetric wormhole solutions. Also, it is a well-known fact that the energy conditions are violated by certain quantum fields, such as the Casimir effect. The magnitude and sign of the Casimir energy depend on Dirichlet or Neumann boundary conditions and geometrical configuration of the objects involved in a Casimir setup. The Casimir energy may act as an ideal candidate for the matter that supports the wormhole geometry. In the present work, we firstly find traversable wormhole solutions supported by a general form for the Casimir energy density assuming a constant redshift function. As well, in this framework, assuming that the radial pressure and energy density obey a linear equation of state, we derive for the first time Casimir traversable wormhole solutions admitting suitable shape function. Then, we consider three geometric configurations of the Casimir effect such as (i) two parallel plates, (ii) two parallel cylindrical shells, and (iii) two spheres. We study wormhole solutions for each case and their property in detail. We also check the weak and strong energy conditions in the spacetime for the obtained wormhole solutions. The stability of the Casimir traversable wormhole solutions are investigated using the Tolman-Oppenheimer-Volkoff (TOV) equation. Finally, we study trajectory of null as well as timelike particles along with quasi-normal modes (QNMs) of a scalar field in the wormhole spacetime.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05801-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05801-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
In the context of General Relativity (GR), violation of the null energy condition (NEC) is necessary for existence of static spherically symmetric wormhole solutions. Also, it is a well-known fact that the energy conditions are violated by certain quantum fields, such as the Casimir effect. The magnitude and sign of the Casimir energy depend on Dirichlet or Neumann boundary conditions and geometrical configuration of the objects involved in a Casimir setup. The Casimir energy may act as an ideal candidate for the matter that supports the wormhole geometry. In the present work, we firstly find traversable wormhole solutions supported by a general form for the Casimir energy density assuming a constant redshift function. As well, in this framework, assuming that the radial pressure and energy density obey a linear equation of state, we derive for the first time Casimir traversable wormhole solutions admitting suitable shape function. Then, we consider three geometric configurations of the Casimir effect such as (i) two parallel plates, (ii) two parallel cylindrical shells, and (iii) two spheres. We study wormhole solutions for each case and their property in detail. We also check the weak and strong energy conditions in the spacetime for the obtained wormhole solutions. The stability of the Casimir traversable wormhole solutions are investigated using the Tolman-Oppenheimer-Volkoff (TOV) equation. Finally, we study trajectory of null as well as timelike particles along with quasi-normal modes (QNMs) of a scalar field in the wormhole spacetime.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.