利用深度学习为 MEMS 加速计生成多个不同的可行解决方案

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-10-07 DOI:10.1109/JSEN.2024.3471618
Xiong Cheng;Zhixiang Zhai;Pengfei Zhang;Yiqi Zhou;Rui Wang;Wenhua Gu;Xiaodong Huang;Daying Sun
{"title":"利用深度学习为 MEMS 加速计生成多个不同的可行解决方案","authors":"Xiong Cheng;Zhixiang Zhai;Pengfei Zhang;Yiqi Zhou;Rui Wang;Wenhua Gu;Xiaodong Huang;Daying Sun","doi":"10.1109/JSEN.2024.3471618","DOIUrl":null,"url":null,"abstract":"Designing micro-electro-mechanical system (MEMS) sensors to meet specific performance requirements is essential. Traditional approaches, which rely heavily on expert knowledge and extensive finite-element simulations, are often time-consuming. Current deep learning (DL) methods in MEMS design typically focus on finding a single feasible solution, neglecting the need to generate multiple solutions simultaneously, which is critical in practical design scenarios. This article presents a methodology to address these limitations, introducing a hybrid network called the conditional variational autoencoder (VAE) and generative adversarial network (CVAE-GAN), along with a multisolution generator (G-MS). The CVAE-GAN enables high-accuracy and high-efficiency inverse design, while the G-MS, with its tailored noise updating strategy, generates multiple distinct feasible solutions for given performance criteria. This methodology has been experimentally validated on a piezoresistive MEMS accelerometer, finding the second solution in \n<inline-formula> <tex-math>$3.60~\\pm ~2.46$ </tex-math></inline-formula>\n s, with a normalized distance of \n<inline-formula> <tex-math>$0.75~\\pm ~0.19$ </tex-math></inline-formula>\n, improving the existing method as much as \n<inline-formula> <tex-math>$3.63\\times $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$7.19\\times $ </tex-math></inline-formula>\n, respectively. While traditional methods struggle to find more than two solutions, our G-MS can continuously output solutions according to the specified number, with the time taken to find each solution remaining nearly constant. This approach demonstrates the capability to quickly generate multiple accurate structural parameters based on desired performance, showcasing significant potential and providing valuable insights for MEMS sensor design.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"38377-38386"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Multiple Distinct Feasible Solutions for MEMS Accelerometers Using Deep Learning\",\"authors\":\"Xiong Cheng;Zhixiang Zhai;Pengfei Zhang;Yiqi Zhou;Rui Wang;Wenhua Gu;Xiaodong Huang;Daying Sun\",\"doi\":\"10.1109/JSEN.2024.3471618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing micro-electro-mechanical system (MEMS) sensors to meet specific performance requirements is essential. Traditional approaches, which rely heavily on expert knowledge and extensive finite-element simulations, are often time-consuming. Current deep learning (DL) methods in MEMS design typically focus on finding a single feasible solution, neglecting the need to generate multiple solutions simultaneously, which is critical in practical design scenarios. This article presents a methodology to address these limitations, introducing a hybrid network called the conditional variational autoencoder (VAE) and generative adversarial network (CVAE-GAN), along with a multisolution generator (G-MS). The CVAE-GAN enables high-accuracy and high-efficiency inverse design, while the G-MS, with its tailored noise updating strategy, generates multiple distinct feasible solutions for given performance criteria. This methodology has been experimentally validated on a piezoresistive MEMS accelerometer, finding the second solution in \\n<inline-formula> <tex-math>$3.60~\\\\pm ~2.46$ </tex-math></inline-formula>\\n s, with a normalized distance of \\n<inline-formula> <tex-math>$0.75~\\\\pm ~0.19$ </tex-math></inline-formula>\\n, improving the existing method as much as \\n<inline-formula> <tex-math>$3.63\\\\times $ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$7.19\\\\times $ </tex-math></inline-formula>\\n, respectively. While traditional methods struggle to find more than two solutions, our G-MS can continuously output solutions according to the specified number, with the time taken to find each solution remaining nearly constant. This approach demonstrates the capability to quickly generate multiple accurate structural parameters based on desired performance, showcasing significant potential and providing valuable insights for MEMS sensor design.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"38377-38386\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706750/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10706750/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

设计满足特定性能要求的微机电系统(MEMS)传感器至关重要。传统方法在很大程度上依赖于专家知识和大量有限元模拟,往往耗费大量时间。目前 MEMS 设计中的深度学习 (DL) 方法通常侧重于寻找单一可行的解决方案,而忽略了同时生成多个解决方案的需求,而这在实际设计场景中至关重要。本文介绍了一种解决这些局限性的方法,引入了一种称为条件变异自动编码器(VAE)和生成对抗网络(CVAE-GAN)的混合网络,以及多解生成器(G-MS)。CVAE-GAN 可实现高精度、高效率的逆向设计,而 G-MS 则利用其定制的噪声更新策略,针对给定的性能标准生成多个不同的可行解决方案。该方法已在压阻 MEMS 加速计上进行了实验验证,在 3.60~pm ~2.46$ 秒内找到了第二个解决方案,归一化距离为 0.75~pm ~0.19$ ,比现有方法分别提高了 3.63/times $ 和 7.19/times $。传统方法很难找到两个以上的解,而我们的 G-MS 可以根据指定的数目连续输出解,找到每个解所需的时间几乎保持不变。这种方法展示了根据所需的性能快速生成多个精确结构参数的能力,展示了巨大的潜力,并为 MEMS 传感器设计提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Multiple Distinct Feasible Solutions for MEMS Accelerometers Using Deep Learning
Designing micro-electro-mechanical system (MEMS) sensors to meet specific performance requirements is essential. Traditional approaches, which rely heavily on expert knowledge and extensive finite-element simulations, are often time-consuming. Current deep learning (DL) methods in MEMS design typically focus on finding a single feasible solution, neglecting the need to generate multiple solutions simultaneously, which is critical in practical design scenarios. This article presents a methodology to address these limitations, introducing a hybrid network called the conditional variational autoencoder (VAE) and generative adversarial network (CVAE-GAN), along with a multisolution generator (G-MS). The CVAE-GAN enables high-accuracy and high-efficiency inverse design, while the G-MS, with its tailored noise updating strategy, generates multiple distinct feasible solutions for given performance criteria. This methodology has been experimentally validated on a piezoresistive MEMS accelerometer, finding the second solution in $3.60~\pm ~2.46$ s, with a normalized distance of $0.75~\pm ~0.19$ , improving the existing method as much as $3.63\times $ and $7.19\times $ , respectively. While traditional methods struggle to find more than two solutions, our G-MS can continuously output solutions according to the specified number, with the time taken to find each solution remaining nearly constant. This approach demonstrates the capability to quickly generate multiple accurate structural parameters based on desired performance, showcasing significant potential and providing valuable insights for MEMS sensor design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1