Chenxing Zhao;Yang Li;Shihao Wu;Wenyi Tan;Shuangju Zhou;Quan Pan
{"title":"通过形状变化补丁对单目深度估计的物理对抗性攻击","authors":"Chenxing Zhao;Yang Li;Shihao Wu;Wenyi Tan;Shuangju Zhou;Quan Pan","doi":"10.1109/JSEN.2024.3472032","DOIUrl":null,"url":null,"abstract":"Adversarial attacks against monocular depth estimation (MDE) systems, which serve as critical visual sensors in autonomous driving and various safety-critical applications, pose significant challenges. These depth cameras provide essential distance information, enabling accurate perception and decision-making. Existing patch-based adversarial attacks for MDE are confined to the vicinity of the patch, limiting their impact on the entire target. To address this limitation, we propose a physics-based adversarial attack on MDE using a framework called an attack with shape-varying patches (ASP). This framework optimizes the content, shape, and position of patches to maximize its disruptive effectiveness on the sensor’s output. We introduce various mask shapes, including quadrilateral, rectangular, and circular masks, to enhance the flexibility and efficiency of the attack. In addition, we propose a new loss function to extend the influence of patches beyond the overlapping regions. Experimental results demonstrate that our attack method generates an average depth error of 18 m on the target car with a patch area of 1/9, impacting over 98% of the target area. This work underscores the vulnerability of visual sensors, such as depth cameras, to adversarial attacks and highlights the imperative for enhanced security measures in sensor technology to ensure reliable and safe operation.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"38440-38452"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Adversarial Attack on Monocular Depth Estimation via Shape-Varying Patches\",\"authors\":\"Chenxing Zhao;Yang Li;Shihao Wu;Wenyi Tan;Shuangju Zhou;Quan Pan\",\"doi\":\"10.1109/JSEN.2024.3472032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial attacks against monocular depth estimation (MDE) systems, which serve as critical visual sensors in autonomous driving and various safety-critical applications, pose significant challenges. These depth cameras provide essential distance information, enabling accurate perception and decision-making. Existing patch-based adversarial attacks for MDE are confined to the vicinity of the patch, limiting their impact on the entire target. To address this limitation, we propose a physics-based adversarial attack on MDE using a framework called an attack with shape-varying patches (ASP). This framework optimizes the content, shape, and position of patches to maximize its disruptive effectiveness on the sensor’s output. We introduce various mask shapes, including quadrilateral, rectangular, and circular masks, to enhance the flexibility and efficiency of the attack. In addition, we propose a new loss function to extend the influence of patches beyond the overlapping regions. Experimental results demonstrate that our attack method generates an average depth error of 18 m on the target car with a patch area of 1/9, impacting over 98% of the target area. This work underscores the vulnerability of visual sensors, such as depth cameras, to adversarial attacks and highlights the imperative for enhanced security measures in sensor technology to ensure reliable and safe operation.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"38440-38452\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709850/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10709850/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Physical Adversarial Attack on Monocular Depth Estimation via Shape-Varying Patches
Adversarial attacks against monocular depth estimation (MDE) systems, which serve as critical visual sensors in autonomous driving and various safety-critical applications, pose significant challenges. These depth cameras provide essential distance information, enabling accurate perception and decision-making. Existing patch-based adversarial attacks for MDE are confined to the vicinity of the patch, limiting their impact on the entire target. To address this limitation, we propose a physics-based adversarial attack on MDE using a framework called an attack with shape-varying patches (ASP). This framework optimizes the content, shape, and position of patches to maximize its disruptive effectiveness on the sensor’s output. We introduce various mask shapes, including quadrilateral, rectangular, and circular masks, to enhance the flexibility and efficiency of the attack. In addition, we propose a new loss function to extend the influence of patches beyond the overlapping regions. Experimental results demonstrate that our attack method generates an average depth error of 18 m on the target car with a patch area of 1/9, impacting over 98% of the target area. This work underscores the vulnerability of visual sensors, such as depth cameras, to adversarial attacks and highlights the imperative for enhanced security measures in sensor technology to ensure reliable and safe operation.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice