通过概率扩散进行信息级联流行预测

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-09-19 DOI:10.1109/TKDE.2024.3465241
Zhangtao Cheng;Fan Zhou;Xovee Xu;Kunpeng Zhang;Goce Trajcevski;Ting Zhong;Philip S. Yu
{"title":"通过概率扩散进行信息级联流行预测","authors":"Zhangtao Cheng;Fan Zhou;Xovee Xu;Kunpeng Zhang;Goce Trajcevski;Ting Zhong;Philip S. Yu","doi":"10.1109/TKDE.2024.3465241","DOIUrl":null,"url":null,"abstract":"Information cascade popularity prediction is an important problem in social network content diffusion analysis. Various facets have been investigated (e.g., diffusion structures and patterns, user influence) and, recently, deep learning models based on sequential architecture and graph neural network (GNN) have been leveraged. However, despite the improvements attained in predicting the future popularity, these methodologies fail to capture two essential aspects inherent to information diffusion: (1) the temporal irregularity of cascade event – i.e., users’ re-tweetings at random and non-periodic time instants; and (2) the inherent uncertainty of the information diffusion. To address these challenges, in this work, we present CasDO – a novel framework for information cascade popularity prediction with probabilistic diffusion models and neural ordinary differential equations (ODEs). We devise a temporal ODE network to generalize the discrete state transitions in RNNs to continuous-time dynamics. CasDO introduces a probabilistic diffusion model to consider the uncertainties in information diffusion by injecting noises in the forwarding process and reconstructing cascade embedding in the reversing process. Extensive experiments that we conducted on three large-scale datasets demonstrate the advantages of the CasDO model over baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8541-8555"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Cascade Popularity Prediction via Probabilistic Diffusion\",\"authors\":\"Zhangtao Cheng;Fan Zhou;Xovee Xu;Kunpeng Zhang;Goce Trajcevski;Ting Zhong;Philip S. Yu\",\"doi\":\"10.1109/TKDE.2024.3465241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information cascade popularity prediction is an important problem in social network content diffusion analysis. Various facets have been investigated (e.g., diffusion structures and patterns, user influence) and, recently, deep learning models based on sequential architecture and graph neural network (GNN) have been leveraged. However, despite the improvements attained in predicting the future popularity, these methodologies fail to capture two essential aspects inherent to information diffusion: (1) the temporal irregularity of cascade event – i.e., users’ re-tweetings at random and non-periodic time instants; and (2) the inherent uncertainty of the information diffusion. To address these challenges, in this work, we present CasDO – a novel framework for information cascade popularity prediction with probabilistic diffusion models and neural ordinary differential equations (ODEs). We devise a temporal ODE network to generalize the discrete state transitions in RNNs to continuous-time dynamics. CasDO introduces a probabilistic diffusion model to consider the uncertainties in information diffusion by injecting noises in the forwarding process and reconstructing cascade embedding in the reversing process. Extensive experiments that we conducted on three large-scale datasets demonstrate the advantages of the CasDO model over baselines.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8541-8555\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684548/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684548/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

信息级联流行度预测是社交网络内容扩散分析中的一个重要问题。人们已经对多个方面(如扩散结构和模式、用户影响力)进行了研究,最近还利用了基于序列架构和图神经网络(GNN)的深度学习模型。然而,尽管在预测未来流行度方面取得了进步,但这些方法未能捕捉到信息扩散固有的两个重要方面:(1) 级联事件的时间不规则性--即用户在随机和非周期性时间瞬间的转发;(2) 信息扩散固有的不确定性。为了应对这些挑战,我们在这项工作中提出了 CasDO--一个利用概率扩散模型和神经常微分方程(ODE)进行信息级联流行度预测的新框架。我们设计了一个时态 ODE 网络,将 RNN 中的离散状态转换概括为连续时间动态。CasDO 引入了概率扩散模型,通过在转发过程中注入噪声和在逆转过程中重建级联嵌入来考虑信息扩散中的不确定性。我们在三个大规模数据集上进行了广泛的实验,证明了 CasDO 模型相对于基线模型的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information Cascade Popularity Prediction via Probabilistic Diffusion
Information cascade popularity prediction is an important problem in social network content diffusion analysis. Various facets have been investigated (e.g., diffusion structures and patterns, user influence) and, recently, deep learning models based on sequential architecture and graph neural network (GNN) have been leveraged. However, despite the improvements attained in predicting the future popularity, these methodologies fail to capture two essential aspects inherent to information diffusion: (1) the temporal irregularity of cascade event – i.e., users’ re-tweetings at random and non-periodic time instants; and (2) the inherent uncertainty of the information diffusion. To address these challenges, in this work, we present CasDO – a novel framework for information cascade popularity prediction with probabilistic diffusion models and neural ordinary differential equations (ODEs). We devise a temporal ODE network to generalize the discrete state transitions in RNNs to continuous-time dynamics. CasDO introduces a probabilistic diffusion model to consider the uncertainties in information diffusion by injecting noises in the forwarding process and reconstructing cascade embedding in the reversing process. Extensive experiments that we conducted on three large-scale datasets demonstrate the advantages of the CasDO model over baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1