利用铜金属有机框架和罗丹明 b 在石墨烯氧化物上与葫芦[7]脲进行硫胺素(维生素 B1)荧光传感的方法

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of the Iranian Chemical Society Pub Date : 2024-11-10 DOI:10.1007/s13738-024-03133-4
Pavitra Rajendran, Sudha Sankaran, Lakshminarayanan Piramuthu, Cheng Yang, E. R. Nagarajan, Narayanan Selvapalam
{"title":"利用铜金属有机框架和罗丹明 b 在石墨烯氧化物上与葫芦[7]脲进行硫胺素(维生素 B1)荧光传感的方法","authors":"Pavitra Rajendran,&nbsp;Sudha Sankaran,&nbsp;Lakshminarayanan Piramuthu,&nbsp;Cheng Yang,&nbsp;E. R. Nagarajan,&nbsp;Narayanan Selvapalam","doi":"10.1007/s13738-024-03133-4","DOIUrl":null,"url":null,"abstract":"<div><p>Thiamine detection has been developed using Copper-Metal Organic Frameworks (CuMOF) and Rhodamine B-complexed Graphene Oxide (RhGO), facilitating both direct and indirect fluorescence-based sensing of thiamine. Both these methods are less cumbersome and sensitive fluorometric methods which are developed from less expensive materials. CuMOF offered the oxidation route of thiamine to thiochrome, which is a fluorescence compound; through which thiamine was detected conveniently by measuring thiochrome. On the other hand, rhodamine B bound graphene oxide–RhGO, released rhodamine B upon interaction with the thiamine through the competitive binding against the rhodamine B located on the graphene oxide, which allowed us to develop a facile sensor for thiamine in DMF. Moreover, the sensitivity of the sensor was improved through the encapsulation effect with cucurbit[7]uril (CB[7]). The limits of detection (LOD) for CuMOF and RhGO with CB[7] were determined to be 48.39 × 10<sup>–8</sup> M and 68.33 × 10<sup>–8</sup> M, respectively. The sensing ability of RhGO was effectively utilized in commercially available thiamine drugs, and its performance was evaluated against other hydrochloride drugs such as metformin, ciprofloxacin, and cetirizine demonstrating its suitability for real-time sample analysis. This approach provides a practical solution for both analytical and pharmaceutical laboratories. Overall, two different detection methods for thiamine have been developed with good selectivity and sensitivity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 12","pages":"2983 - 2991"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for the fluorescence sensing of thiamine (vitamin B1)-by copper metal organic framework and rhodamine b on graphene oxide with cucurbit[7]uril\",\"authors\":\"Pavitra Rajendran,&nbsp;Sudha Sankaran,&nbsp;Lakshminarayanan Piramuthu,&nbsp;Cheng Yang,&nbsp;E. R. Nagarajan,&nbsp;Narayanan Selvapalam\",\"doi\":\"10.1007/s13738-024-03133-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thiamine detection has been developed using Copper-Metal Organic Frameworks (CuMOF) and Rhodamine B-complexed Graphene Oxide (RhGO), facilitating both direct and indirect fluorescence-based sensing of thiamine. Both these methods are less cumbersome and sensitive fluorometric methods which are developed from less expensive materials. CuMOF offered the oxidation route of thiamine to thiochrome, which is a fluorescence compound; through which thiamine was detected conveniently by measuring thiochrome. On the other hand, rhodamine B bound graphene oxide–RhGO, released rhodamine B upon interaction with the thiamine through the competitive binding against the rhodamine B located on the graphene oxide, which allowed us to develop a facile sensor for thiamine in DMF. Moreover, the sensitivity of the sensor was improved through the encapsulation effect with cucurbit[7]uril (CB[7]). The limits of detection (LOD) for CuMOF and RhGO with CB[7] were determined to be 48.39 × 10<sup>–8</sup> M and 68.33 × 10<sup>–8</sup> M, respectively. The sensing ability of RhGO was effectively utilized in commercially available thiamine drugs, and its performance was evaluated against other hydrochloride drugs such as metformin, ciprofloxacin, and cetirizine demonstrating its suitability for real-time sample analysis. This approach provides a practical solution for both analytical and pharmaceutical laboratories. Overall, two different detection methods for thiamine have been developed with good selectivity and sensitivity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"21 12\",\"pages\":\"2983 - 2991\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03133-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03133-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用铜-金属有机框架(CuMOF)和罗丹明 B-络合石墨烯氧化物(RhGO)开发了硫胺素检测方法,从而促进了硫胺素的直接和间接荧光传感。这两种方法都是利用价格较低的材料开发出来的简便灵敏的荧光测定法。CuMOF 提供了硫胺素氧化为硫代铬的途径,硫代铬是一种荧光化合物,通过测量硫代铬可以方便地检测硫胺素。另一方面,与罗丹明 B 结合的氧化石墨烯-RhGO 在与硫胺素作用时,会通过与位于氧化石墨烯上的罗丹明 B 的竞争性结合释放罗丹明 B,这使我们能够开发出一种在 DMF 中检测硫胺素的简便传感器。此外,通过葫芦[7]脲(CB[7])的封装效应,传感器的灵敏度也得到了提高。CuMOF 和含有 CB[7] 的 RhGO 的检出限(LOD)分别为 48.39 × 10-8 M 和 68.33 × 10-8 M。RhGO 的传感能力在市售硫胺素药物中得到了有效利用,其性能还针对二甲双胍、环丙沙星和西替利嗪等其他盐酸药物进行了评估,证明其适用于实时样品分析。这种方法为分析和制药实验室提供了一种实用的解决方案。总之,已开发出两种不同的硫胺素检测方法,具有良好的选择性和灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for the fluorescence sensing of thiamine (vitamin B1)-by copper metal organic framework and rhodamine b on graphene oxide with cucurbit[7]uril

Thiamine detection has been developed using Copper-Metal Organic Frameworks (CuMOF) and Rhodamine B-complexed Graphene Oxide (RhGO), facilitating both direct and indirect fluorescence-based sensing of thiamine. Both these methods are less cumbersome and sensitive fluorometric methods which are developed from less expensive materials. CuMOF offered the oxidation route of thiamine to thiochrome, which is a fluorescence compound; through which thiamine was detected conveniently by measuring thiochrome. On the other hand, rhodamine B bound graphene oxide–RhGO, released rhodamine B upon interaction with the thiamine through the competitive binding against the rhodamine B located on the graphene oxide, which allowed us to develop a facile sensor for thiamine in DMF. Moreover, the sensitivity of the sensor was improved through the encapsulation effect with cucurbit[7]uril (CB[7]). The limits of detection (LOD) for CuMOF and RhGO with CB[7] were determined to be 48.39 × 10–8 M and 68.33 × 10–8 M, respectively. The sensing ability of RhGO was effectively utilized in commercially available thiamine drugs, and its performance was evaluated against other hydrochloride drugs such as metformin, ciprofloxacin, and cetirizine demonstrating its suitability for real-time sample analysis. This approach provides a practical solution for both analytical and pharmaceutical laboratories. Overall, two different detection methods for thiamine have been developed with good selectivity and sensitivity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
期刊最新文献
Method for analyzing nitrogen trifluoride impurities in high-purity carbon tetrafluoride by gas chromatography Methods for the fluorescence sensing of thiamine (vitamin B1)-by copper metal organic framework and rhodamine b on graphene oxide with cucurbit[7]uril Efficient and selective oxidation of alcohols and hydrocarbons catalyzed by oxovanadium(IV) unsymmetrical salophen complex supported on silica-coated CoFe2O4 magnetic nanoparticles New luminescent Eu(III) and Er(III) Schiff base complexes: synthesis, characterization and luminescence properties Regioselective ROH-epoxystyrene-opening over MWCNTs-[N4] macrocycle comprising Cu(II), Fe(III) or Cr(III)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1