Julius Raute, Alexander Beret, Max Biegler, Michael Rethmeier
{"title":"铜合金增材制造的生命周期评估--激光和电子束的比较","authors":"Julius Raute, Alexander Beret, Max Biegler, Michael Rethmeier","doi":"10.1007/s40194-024-01856-9","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3169 - 3176"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01856-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Life cycle assessment in additive manufacturing of copper alloys—comparison between laser and electron beam\",\"authors\":\"Julius Raute, Alexander Beret, Max Biegler, Michael Rethmeier\",\"doi\":\"10.1007/s40194-024-01856-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Additive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"68 12\",\"pages\":\"3169 - 3176\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40194-024-01856-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01856-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01856-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Life cycle assessment in additive manufacturing of copper alloys—comparison between laser and electron beam
Additive manufacturing is becoming increasingly important for industrial production. In this context, directed energy deposition processes are in demand to achieve high deposition rates. In addition to the well-known laser-based processes, the electron beam has also reached industrial market maturity. The wire electron beam additive manufacturing offers advantages in the processing of copper materials, for example. In the literature, the higher energy efficiency and the resulting improvement in the carbon footprint of the electron beam are highlighted. However, there is a lack of practical studies with measurement data to quantify the potential of the technology. In this work, a comparative life cycle assessment between wire electron beam additive manufacturing (DED-EB) and laser powder additive manufacturing (DED-LB) is carried out. This involves determining the resources for manufacturing, producing a test component using both processes, and measuring the entire energy consumption. The environmental impact is then estimated using the factors global warming potential (GWP100), photochemical ozone creation potential (POCP), acidification potential (AP), and eutrophication potential (EP). It can be seen that wire electron beam additive manufacturing is characterized by a significantly lower energy requirement. In addition, the use of wire ensures greater resource efficiency, which leads to overall better life cycle assessment results.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.