Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan
{"title":"使用 Fe-Fe2O3-Ti 多层结构的石墨烯基超表面太阳能吸收器","authors":"Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan","doi":"10.1007/s11082-024-07767-9","DOIUrl":null,"url":null,"abstract":"<div><p>The generating absorber design for the thermal heating system is contributed with the three-layer composition of a resonator layer using iron, the substrate part by Ferric oxide, and the design’s bottom layer in Titanium respectively. The exposed absorption rates depend on the overall range of wavelength and can be identified with the best wavelength numbers (µm) of 0.37, 0.61, 0.88, and 2.11. The overall bandwidth number that we can present for the current design is 2800 nm by the wavelength separation of 0.2 and 3 µm and shows an effective percentage of 93.34%. The other two bandwidth numbers over the 2800 nm are 1500 nm (95.1%) by a wavelength separation of 1.5 and 3 µm, and 1000 nm (97.54%) with a wavelength configuration of 1.5 and 2.5 µm. With the respective presentation of the current design, the used material types and parametric rates, the analysis exploration of the changed parametric values, and the conclusion of the proposed work will be presented properly. The generated solar absorber can be used in a variety of various industrial applications of food processing, mineral processing, water desalination, and chemical production.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-based metasurface solar absorber using Fe–Fe2O3–Ti multilayer structure\",\"authors\":\"Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan\",\"doi\":\"10.1007/s11082-024-07767-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generating absorber design for the thermal heating system is contributed with the three-layer composition of a resonator layer using iron, the substrate part by Ferric oxide, and the design’s bottom layer in Titanium respectively. The exposed absorption rates depend on the overall range of wavelength and can be identified with the best wavelength numbers (µm) of 0.37, 0.61, 0.88, and 2.11. The overall bandwidth number that we can present for the current design is 2800 nm by the wavelength separation of 0.2 and 3 µm and shows an effective percentage of 93.34%. The other two bandwidth numbers over the 2800 nm are 1500 nm (95.1%) by a wavelength separation of 1.5 and 3 µm, and 1000 nm (97.54%) with a wavelength configuration of 1.5 and 2.5 µm. With the respective presentation of the current design, the used material types and parametric rates, the analysis exploration of the changed parametric values, and the conclusion of the proposed work will be presented properly. The generated solar absorber can be used in a variety of various industrial applications of food processing, mineral processing, water desalination, and chemical production.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"56 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-024-07767-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07767-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Graphene-based metasurface solar absorber using Fe–Fe2O3–Ti multilayer structure
The generating absorber design for the thermal heating system is contributed with the three-layer composition of a resonator layer using iron, the substrate part by Ferric oxide, and the design’s bottom layer in Titanium respectively. The exposed absorption rates depend on the overall range of wavelength and can be identified with the best wavelength numbers (µm) of 0.37, 0.61, 0.88, and 2.11. The overall bandwidth number that we can present for the current design is 2800 nm by the wavelength separation of 0.2 and 3 µm and shows an effective percentage of 93.34%. The other two bandwidth numbers over the 2800 nm are 1500 nm (95.1%) by a wavelength separation of 1.5 and 3 µm, and 1000 nm (97.54%) with a wavelength configuration of 1.5 and 2.5 µm. With the respective presentation of the current design, the used material types and parametric rates, the analysis exploration of the changed parametric values, and the conclusion of the proposed work will be presented properly. The generated solar absorber can be used in a variety of various industrial applications of food processing, mineral processing, water desalination, and chemical production.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.