{"title":"从冬季休眠到春季绽放:铜绿微囊藻越冬后恢复的调节机制","authors":"Chenjun Fu, Xinyi Wang, Jing Yu, Hu Cui, Shengnan Hou, Hui Zhu","doi":"10.1016/j.watres.2024.122807","DOIUrl":null,"url":null,"abstract":"Cyanobacterial blooms pose a significant environmental threat in freshwater ecosystems. These cyanobacteria exhibit resilience to cold and dark conditions during winter and flourish as temperature rise in warmer seasons. However, there is a limited understanding of the dynamic growth recovery process and regulatory signaling mechanisms in cyanobacteria after overwintering. In this study, we employed <em>Microcystis aeruginosa</em> (<em>M. aeruginosa</em>) as a model to simulate its growth recovery when subjected to increasing temperature after overwintering under low temperature (4 °C) and dark conditions. We investigated changes in cell growth, microcystin levels, and signaling pathways throughout this recovery phase. Our results indicated that compared to the non-overwintering treatment (T1), the overwintered treatment (T2) experienced a 55.6% decrease in algae density and a significant reduction in microcystin-LR (MC-LR) levels within the 15-20 °C temperature range (<em>p</em> < 0.05). Overwintering suppressed photosynthetic efficiency during the recovery phase of <em>M. aeruginosa</em>, activated the antioxidant system, and impaired cellular ultrastructure, making algal cells more vulnerable to death. At the transcriptional level, overwintering down-regulated pathways such as photosynthesis, ribosome, the Calvin cycle, and oxidative phosphorylation, hindering the growth and metabolic capacity of <em>M. aeruginosa</em>. In conclusion, this study highlights the inhibitory impacts of overwintering on growth and metabolism of cyanobacteria during the recovery process. It provides insights into the mechanistic foundations of seasonal cyanobacterial blooms and the crucial role of signaling regulation in these processes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Winter Dormancy to Spring Bloom: Regulatory Mechanisms in Microcystis aeruginosa Post-Overwintering Recovery\",\"authors\":\"Chenjun Fu, Xinyi Wang, Jing Yu, Hu Cui, Shengnan Hou, Hui Zhu\",\"doi\":\"10.1016/j.watres.2024.122807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyanobacterial blooms pose a significant environmental threat in freshwater ecosystems. These cyanobacteria exhibit resilience to cold and dark conditions during winter and flourish as temperature rise in warmer seasons. However, there is a limited understanding of the dynamic growth recovery process and regulatory signaling mechanisms in cyanobacteria after overwintering. In this study, we employed <em>Microcystis aeruginosa</em> (<em>M. aeruginosa</em>) as a model to simulate its growth recovery when subjected to increasing temperature after overwintering under low temperature (4 °C) and dark conditions. We investigated changes in cell growth, microcystin levels, and signaling pathways throughout this recovery phase. Our results indicated that compared to the non-overwintering treatment (T1), the overwintered treatment (T2) experienced a 55.6% decrease in algae density and a significant reduction in microcystin-LR (MC-LR) levels within the 15-20 °C temperature range (<em>p</em> < 0.05). Overwintering suppressed photosynthetic efficiency during the recovery phase of <em>M. aeruginosa</em>, activated the antioxidant system, and impaired cellular ultrastructure, making algal cells more vulnerable to death. At the transcriptional level, overwintering down-regulated pathways such as photosynthesis, ribosome, the Calvin cycle, and oxidative phosphorylation, hindering the growth and metabolic capacity of <em>M. aeruginosa</em>. In conclusion, this study highlights the inhibitory impacts of overwintering on growth and metabolism of cyanobacteria during the recovery process. It provides insights into the mechanistic foundations of seasonal cyanobacterial blooms and the crucial role of signaling regulation in these processes.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122807\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122807","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
From Winter Dormancy to Spring Bloom: Regulatory Mechanisms in Microcystis aeruginosa Post-Overwintering Recovery
Cyanobacterial blooms pose a significant environmental threat in freshwater ecosystems. These cyanobacteria exhibit resilience to cold and dark conditions during winter and flourish as temperature rise in warmer seasons. However, there is a limited understanding of the dynamic growth recovery process and regulatory signaling mechanisms in cyanobacteria after overwintering. In this study, we employed Microcystis aeruginosa (M. aeruginosa) as a model to simulate its growth recovery when subjected to increasing temperature after overwintering under low temperature (4 °C) and dark conditions. We investigated changes in cell growth, microcystin levels, and signaling pathways throughout this recovery phase. Our results indicated that compared to the non-overwintering treatment (T1), the overwintered treatment (T2) experienced a 55.6% decrease in algae density and a significant reduction in microcystin-LR (MC-LR) levels within the 15-20 °C temperature range (p < 0.05). Overwintering suppressed photosynthetic efficiency during the recovery phase of M. aeruginosa, activated the antioxidant system, and impaired cellular ultrastructure, making algal cells more vulnerable to death. At the transcriptional level, overwintering down-regulated pathways such as photosynthesis, ribosome, the Calvin cycle, and oxidative phosphorylation, hindering the growth and metabolic capacity of M. aeruginosa. In conclusion, this study highlights the inhibitory impacts of overwintering on growth and metabolism of cyanobacteria during the recovery process. It provides insights into the mechanistic foundations of seasonal cyanobacterial blooms and the crucial role of signaling regulation in these processes.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.