幼体斑马鱼神经活性药物的深度表型分析

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-17 DOI:10.1038/s41467-024-54375-y
Leo Gendelev, Jack Taylor, Douglas Myers-Turnbull, Steven Chen, Matthew N. McCarroll, Michelle R. Arkin, David Kokel, Michael J. Keiser
{"title":"幼体斑马鱼神经活性药物的深度表型分析","authors":"Leo Gendelev, Jack Taylor, Douglas Myers-Turnbull, Steven Chen, Matthew N. McCarroll, Michelle R. Arkin, David Kokel, Michael J. Keiser","doi":"10.1038/s41467-024-54375-y","DOIUrl":null,"url":null,"abstract":"<p>Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screen a library of 650 central nervous system active compounds in high replicate to train deep metric learning models on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous physical well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provide a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance–the canonical way of computing distances between profiles–and generalizes to an orthogonal dataset of diverse drug-like compounds. We validate predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These neuroactive compounds exhibit diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep phenotypic profiling of neuroactive drugs in larval zebrafish\",\"authors\":\"Leo Gendelev, Jack Taylor, Douglas Myers-Turnbull, Steven Chen, Matthew N. McCarroll, Michelle R. Arkin, David Kokel, Michael J. Keiser\",\"doi\":\"10.1038/s41467-024-54375-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screen a library of 650 central nervous system active compounds in high replicate to train deep metric learning models on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous physical well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provide a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance–the canonical way of computing distances between profiles–and generalizes to an orthogonal dataset of diverse drug-like compounds. We validate predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These neuroactive compounds exhibit diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54375-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54375-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

行为幼体斑马鱼筛选利用高通量小分子发现形式来寻找与哺乳动物生理学相关的神经活性分子。我们筛选了一个包含 650 种中枢神经系统活性化合物的高重复性化合物库,以训练斑马鱼行为特征的深度度量学习模型。机器学习最初利用了表型筛选中的微妙伪影,因此需要通过严格的物理随机化重新进行完整的实验。这些大型匹配表型筛选数据集(初始数据集和随机化数据集)提供了一个独特的机会,可以量化和了解全面的、真实世界药物发现数据集中的捷径学习。最终的深度度量学习模型大大优于相关距离--计算剖面间距离的典型方法--并可推广到由不同药物化合物组成的正交数据集。我们通过针对人类蛋白质靶点的前瞻性体外放射性配体结合试验验证了预测结果,尽管跨越了物种和化学支架的界限,但命中率仍达到了 58%。这些具有神经活性的化合物展示了多样化的化学支架,证明斑马鱼表型筛选与计量学习相结合可以实现强大的支架跳跃能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep phenotypic profiling of neuroactive drugs in larval zebrafish

Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screen a library of 650 central nervous system active compounds in high replicate to train deep metric learning models on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous physical well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provide a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance–the canonical way of computing distances between profiles–and generalizes to an orthogonal dataset of diverse drug-like compounds. We validate predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These neuroactive compounds exhibit diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay Deep phenotypic profiling of neuroactive drugs in larval zebrafish Dispersion kinks from electronic correlations in an unconventional iron-based superconductor Whole-exome sequencing reveals genomic landscape of intrahepatic cholangiocarcinoma and identifies SAV1 as a potential driver A self-eliminating allelic-drive reverses insecticide resistance in Drosophila leaving no transgene in the population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1