通过重新认识传输和成核动力学,打破锂氧电池的容量瓶颈

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-17 DOI:10.1038/s41467-024-54366-z
Zhuojun Zhang, Xu Xiao, Aijing Yan, Kai Sun, Jianwen Yu, Peng Tan
{"title":"通过重新认识传输和成核动力学,打破锂氧电池的容量瓶颈","authors":"Zhuojun Zhang, Xu Xiao, Aijing Yan, Kai Sun, Jianwen Yu, Peng Tan","doi":"10.1038/s41467-024-54366-z","DOIUrl":null,"url":null,"abstract":"<p>The practical capacity of lithium-oxygen batteries falls short of their ultra-high theoretical value. Unfortunately, the fundamental understanding and enhanced design remain lacking, as the issue is complicated by the coupling processes between Li<sub>2</sub>O<sub>2</sub> nucleation, growth, and multi-species transport. Herein, we redefine the relationship between the microscale Li<sub>2</sub>O<sub>2</sub> behaviors and the macroscopic electrochemical performance, emphasizing the importance of the inherent modulating ability of Li<sup>+</sup> ions through a synergy of visualization techniques and cross-scale quantification. We find that Li<sub>2</sub>O<sub>2</sub> particle distributed against the oxygen gradient signifies a compatibility match for the nucleation and transport kinetics, thus enabling the output of the electrode’s maximum capacity and providing a basis for evaluating operating protocols for future applications. In this case, a 150% capacity enhancement is further achieved through the development of a universalizing methodology. This work opens the door for the rules and control of energy conversion in metal-air batteries, greatly accelerating their path to commercialization.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics\",\"authors\":\"Zhuojun Zhang, Xu Xiao, Aijing Yan, Kai Sun, Jianwen Yu, Peng Tan\",\"doi\":\"10.1038/s41467-024-54366-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The practical capacity of lithium-oxygen batteries falls short of their ultra-high theoretical value. Unfortunately, the fundamental understanding and enhanced design remain lacking, as the issue is complicated by the coupling processes between Li<sub>2</sub>O<sub>2</sub> nucleation, growth, and multi-species transport. Herein, we redefine the relationship between the microscale Li<sub>2</sub>O<sub>2</sub> behaviors and the macroscopic electrochemical performance, emphasizing the importance of the inherent modulating ability of Li<sup>+</sup> ions through a synergy of visualization techniques and cross-scale quantification. We find that Li<sub>2</sub>O<sub>2</sub> particle distributed against the oxygen gradient signifies a compatibility match for the nucleation and transport kinetics, thus enabling the output of the electrode’s maximum capacity and providing a basis for evaluating operating protocols for future applications. In this case, a 150% capacity enhancement is further achieved through the development of a universalizing methodology. This work opens the door for the rules and control of energy conversion in metal-air batteries, greatly accelerating their path to commercialization.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54366-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54366-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

锂氧电池的实际容量与其超高的理论值相差甚远。遗憾的是,由于锂氧化物成核、生长和多物种传输之间的耦合过程使问题变得复杂,因此仍然缺乏对这一问题的基本理解和改进设计。在此,我们通过可视化技术和跨尺度量化技术的协同作用,重新定义了微尺度 Li2O2 行为与宏观电化学性能之间的关系,强调了 Li+ 离子固有调节能力的重要性。我们发现,逆氧梯度分布的 Li2O2 粒子标志着成核和传输动力学的兼容性匹配,从而能够输出电极的最大容量,并为评估未来应用的操作规程提供依据。在这种情况下,通过开发一种通用方法,可进一步提高 150% 的容量。这项工作为金属空气电池的能量转换规则和控制打开了大门,大大加快了其商业化进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics

The practical capacity of lithium-oxygen batteries falls short of their ultra-high theoretical value. Unfortunately, the fundamental understanding and enhanced design remain lacking, as the issue is complicated by the coupling processes between Li2O2 nucleation, growth, and multi-species transport. Herein, we redefine the relationship between the microscale Li2O2 behaviors and the macroscopic electrochemical performance, emphasizing the importance of the inherent modulating ability of Li+ ions through a synergy of visualization techniques and cross-scale quantification. We find that Li2O2 particle distributed against the oxygen gradient signifies a compatibility match for the nucleation and transport kinetics, thus enabling the output of the electrode’s maximum capacity and providing a basis for evaluating operating protocols for future applications. In this case, a 150% capacity enhancement is further achieved through the development of a universalizing methodology. This work opens the door for the rules and control of energy conversion in metal-air batteries, greatly accelerating their path to commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Rapid biphasic decay of intact and defective HIV DNA reservoir during acute treated HIV disease Regional ice flow piracy following the collapse of Midgaard Glacier in Southeast Greenland Quasi-phase-matching enabled by van der Waals stacking CRISPR screens and lectin microarrays identify high mannose N-glycan regulators IL-12 drives the expression of the inhibitory receptor NKG2A on human tumor-reactive CD8 T cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1