{"title":"基于 MOF 的双通道左氧氟沙星探针的开发及其在食品和饮料检测中的应用","authors":"Yaqi Yu, Dilong Hong, Zeyu Zhu, Yuliang Jiang","doi":"10.1016/j.foodchem.2024.142110","DOIUrl":null,"url":null,"abstract":"Food safety issues are becoming increasingly prominent, raising public concern. Antibiotic pollutants, as a unique category, act like a double-edged sword. On one hand, they provide precise treatment for related diseases, but on the other hand, their excessive use or improper handling can lead to environmental contamination or entry into the biological chain. This makes it easy for living organisms to come into contact with and ingest these pollutants, leading to serious consequences. Among these antibiotics, Levofloxacin (LVF), a broad-spectrum antibacterial agent, effectively treats various bacterial infections but also causes severe problems due to its misuse. Therefore, developing a simple, fast, and efficient probe for detecting LVF is crucial for environmental protection and human safety. In this study, a novel UiO-66-F<sub>4</sub> fluorescent probe was synthesized. This probe demonstrated dual-channel detection of LVF through its inner filter effect (IFE) and chemical interactions, resulting in a visible color change from colorless to green. It exhibits good linear ranges at the fluorescence peaks of 494 nm (30–68 μM), with a detection limit of 0.1 μM. Based on its excellent detection performance, the probe was further applied for the quantitative determination of LVF in different types of food and beverages samples, yielding satisfactory results with recovery rates ranging from 93.4 % to 114.6 %. This probe offers a reliable means for the detection and evaluation of trace amounts of LVF in food.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"7 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a MOF-based dual-channel levofloxacin probe and its application in the detection of food and beverage\",\"authors\":\"Yaqi Yu, Dilong Hong, Zeyu Zhu, Yuliang Jiang\",\"doi\":\"10.1016/j.foodchem.2024.142110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food safety issues are becoming increasingly prominent, raising public concern. Antibiotic pollutants, as a unique category, act like a double-edged sword. On one hand, they provide precise treatment for related diseases, but on the other hand, their excessive use or improper handling can lead to environmental contamination or entry into the biological chain. This makes it easy for living organisms to come into contact with and ingest these pollutants, leading to serious consequences. Among these antibiotics, Levofloxacin (LVF), a broad-spectrum antibacterial agent, effectively treats various bacterial infections but also causes severe problems due to its misuse. Therefore, developing a simple, fast, and efficient probe for detecting LVF is crucial for environmental protection and human safety. In this study, a novel UiO-66-F<sub>4</sub> fluorescent probe was synthesized. This probe demonstrated dual-channel detection of LVF through its inner filter effect (IFE) and chemical interactions, resulting in a visible color change from colorless to green. It exhibits good linear ranges at the fluorescence peaks of 494 nm (30–68 μM), with a detection limit of 0.1 μM. Based on its excellent detection performance, the probe was further applied for the quantitative determination of LVF in different types of food and beverages samples, yielding satisfactory results with recovery rates ranging from 93.4 % to 114.6 %. This probe offers a reliable means for the detection and evaluation of trace amounts of LVF in food.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142110\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142110","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Development of a MOF-based dual-channel levofloxacin probe and its application in the detection of food and beverage
Food safety issues are becoming increasingly prominent, raising public concern. Antibiotic pollutants, as a unique category, act like a double-edged sword. On one hand, they provide precise treatment for related diseases, but on the other hand, their excessive use or improper handling can lead to environmental contamination or entry into the biological chain. This makes it easy for living organisms to come into contact with and ingest these pollutants, leading to serious consequences. Among these antibiotics, Levofloxacin (LVF), a broad-spectrum antibacterial agent, effectively treats various bacterial infections but also causes severe problems due to its misuse. Therefore, developing a simple, fast, and efficient probe for detecting LVF is crucial for environmental protection and human safety. In this study, a novel UiO-66-F4 fluorescent probe was synthesized. This probe demonstrated dual-channel detection of LVF through its inner filter effect (IFE) and chemical interactions, resulting in a visible color change from colorless to green. It exhibits good linear ranges at the fluorescence peaks of 494 nm (30–68 μM), with a detection limit of 0.1 μM. Based on its excellent detection performance, the probe was further applied for the quantitative determination of LVF in different types of food and beverages samples, yielding satisfactory results with recovery rates ranging from 93.4 % to 114.6 %. This probe offers a reliable means for the detection and evaluation of trace amounts of LVF in food.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.