Xuejiao Qi, Xuan Jia, Mingxiao Li, Meiying Ye, Yufang Wei, Fanhua Meng, Shanfei Fu, Beidou Xi
{"title":"增强微生物电合成中的二氧化碳还原甲烷生成:碳基阴极上含氧基团的作用。","authors":"Xuejiao Qi, Xuan Jia, Mingxiao Li, Meiying Ye, Yufang Wei, Fanhua Meng, Shanfei Fu, Beidou Xi","doi":"10.1016/j.biortech.2024.131830","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO<sub>2</sub> into CH<sub>4</sub>. Constructing a biocathode with both strong H<sub>2</sub>-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH<sub>4</sub> production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH<sub>4</sub> production and increasing the CH<sub>4</sub> yield by 2-3 times. Carboxyl groups decreased the overpotential for H<sub>2</sub> evolution and increased current density, thereby enhancing H<sub>2</sub>-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO<sub>2</sub> fixation.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131830"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing CO<sub>2</sub>-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes.\",\"authors\":\"Xuejiao Qi, Xuan Jia, Mingxiao Li, Meiying Ye, Yufang Wei, Fanhua Meng, Shanfei Fu, Beidou Xi\",\"doi\":\"10.1016/j.biortech.2024.131830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO<sub>2</sub> into CH<sub>4</sub>. Constructing a biocathode with both strong H<sub>2</sub>-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH<sub>4</sub> production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH<sub>4</sub> production and increasing the CH<sub>4</sub> yield by 2-3 times. Carboxyl groups decreased the overpotential for H<sub>2</sub> evolution and increased current density, thereby enhancing H<sub>2</sub>-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO<sub>2</sub> fixation.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"131830\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131830\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131830","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Enhancing CO2-reduction methanogenesis in microbial electrosynthesis: Role of oxygen-containing groups on carbon-based cathodes.
Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO2 into CH4. Constructing a biocathode with both strong H2-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH4 production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH4 production and increasing the CH4 yield by 2-3 times. Carboxyl groups decreased the overpotential for H2 evolution and increased current density, thereby enhancing H2-mediated electron transfer. Additionally, carboxyl groups increased the relative abundance of Methanosaeta by 3%-10%, doubled the protein content in extracellular polymeric substances, and boosted the expression of cytochrome c-related genes, thereby enhancing direct electron transfer capacity. These findings present a novel and efficient approach for constructing a stable, high-performance biocathode, contributing to energy recovery and CO2 fixation.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.