Xunlong Ji, Hui Chen, Zijin Hong, Jingjing Du, Zhenli Sun
{"title":"利用带有新型磁性 SERS 传感器的 3D 打印微流控装置在线检测气溶胶 pH 值。","authors":"Xunlong Ji, Hui Chen, Zijin Hong, Jingjing Du, Zhenli Sun","doi":"10.1021/acs.analchem.4c03483","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate measurement of aerosol pH is crucial for understanding atmospheric processes and mitigating haze pollution. However, online detection of aerosol pH is challenging due to the complex composition of single-particle matter and trace components. This study develops a sensitive and selective sensor for the online detection of aerosol pH using surface-enhanced Raman spectroscopy (SERS). A novel Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Au-<i>p</i>-aminothiophenol (FA-pATP) sensor was fabricated using a layer-by-layer self-assembly method, achieving enhanced uniformity and increased density of SERS-active hotspots. Magnetic aggregation was employed to further amplify the Raman signal. This sensor was integrated into a 3D-printed microfluidic device to facilitate online monitoring of aerosol pH. The FA-pATP sensor exhibited a significant increase in peak intensity ratio with rising pH, demonstrating high sensitivity and responsiveness due to structural changes in the -NH<sub>2</sub> groups of pATP under different pH conditions. The sensor demonstrated a linear pH response ranging from 5 to 11. The 3D-printed microfluidic device, coupled with the FA-pATP sensor, demonstrated notable performance in various environmental media, indicating strong anti-interference capabilities. The proposed sensor shows great promise for real-time online monitoring of aerosol pH, with broad applications in environmental monitoring.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Aerosol pH Detection Using 3D-Printed Microfluidic Devices with a Novel Magnetic SERS Sensor.\",\"authors\":\"Xunlong Ji, Hui Chen, Zijin Hong, Jingjing Du, Zhenli Sun\",\"doi\":\"10.1021/acs.analchem.4c03483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate measurement of aerosol pH is crucial for understanding atmospheric processes and mitigating haze pollution. However, online detection of aerosol pH is challenging due to the complex composition of single-particle matter and trace components. This study develops a sensitive and selective sensor for the online detection of aerosol pH using surface-enhanced Raman spectroscopy (SERS). A novel Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Au-<i>p</i>-aminothiophenol (FA-pATP) sensor was fabricated using a layer-by-layer self-assembly method, achieving enhanced uniformity and increased density of SERS-active hotspots. Magnetic aggregation was employed to further amplify the Raman signal. This sensor was integrated into a 3D-printed microfluidic device to facilitate online monitoring of aerosol pH. The FA-pATP sensor exhibited a significant increase in peak intensity ratio with rising pH, demonstrating high sensitivity and responsiveness due to structural changes in the -NH<sub>2</sub> groups of pATP under different pH conditions. The sensor demonstrated a linear pH response ranging from 5 to 11. The 3D-printed microfluidic device, coupled with the FA-pATP sensor, demonstrated notable performance in various environmental media, indicating strong anti-interference capabilities. The proposed sensor shows great promise for real-time online monitoring of aerosol pH, with broad applications in environmental monitoring.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c03483\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03483","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Online Aerosol pH Detection Using 3D-Printed Microfluidic Devices with a Novel Magnetic SERS Sensor.
Accurate measurement of aerosol pH is crucial for understanding atmospheric processes and mitigating haze pollution. However, online detection of aerosol pH is challenging due to the complex composition of single-particle matter and trace components. This study develops a sensitive and selective sensor for the online detection of aerosol pH using surface-enhanced Raman spectroscopy (SERS). A novel Fe3O4@SiO2@Au-p-aminothiophenol (FA-pATP) sensor was fabricated using a layer-by-layer self-assembly method, achieving enhanced uniformity and increased density of SERS-active hotspots. Magnetic aggregation was employed to further amplify the Raman signal. This sensor was integrated into a 3D-printed microfluidic device to facilitate online monitoring of aerosol pH. The FA-pATP sensor exhibited a significant increase in peak intensity ratio with rising pH, demonstrating high sensitivity and responsiveness due to structural changes in the -NH2 groups of pATP under different pH conditions. The sensor demonstrated a linear pH response ranging from 5 to 11. The 3D-printed microfluidic device, coupled with the FA-pATP sensor, demonstrated notable performance in various environmental media, indicating strong anti-interference capabilities. The proposed sensor shows great promise for real-time online monitoring of aerosol pH, with broad applications in environmental monitoring.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.