{"title":"固沙灌木的叶片转气冷却和耐热性在等水异相气孔调节谱上各不相同","authors":"Jing-Jing Guo, Xue-Wei Gong, Guang-You Hao","doi":"10.1111/pce.15279","DOIUrl":null,"url":null,"abstract":"<p><p>Transpirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water-limited and simultaneously heat-stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat-related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf Transpirational Cooling and Thermal Tolerance Vary Along the Spectrum of Iso-Anisohydric Stomatal Regulation in Sand-Fixing Shrubs.\",\"authors\":\"Jing-Jing Guo, Xue-Wei Gong, Guang-You Hao\",\"doi\":\"10.1111/pce.15279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transpirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water-limited and simultaneously heat-stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat-related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15279\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15279","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Leaf Transpirational Cooling and Thermal Tolerance Vary Along the Spectrum of Iso-Anisohydric Stomatal Regulation in Sand-Fixing Shrubs.
Transpirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water-limited and simultaneously heat-stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat-related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.