Shi-Wei Ye, Shuang-Di Song, Xi-Juan Liu, Yun Luo, Shi-Qing Cai
{"title":"小分子筛选发现了针对 5-HT/DA 信号通路的新型衰老调节剂。","authors":"Shi-Wei Ye, Shuang-Di Song, Xi-Juan Liu, Yun Luo, Shi-Qing Cai","doi":"10.1111/acel.14411","DOIUrl":null,"url":null,"abstract":"<p><p>The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca<sup>2+</sup> homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14411"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway.\",\"authors\":\"Shi-Wei Ye, Shuang-Di Song, Xi-Juan Liu, Yun Luo, Shi-Qing Cai\",\"doi\":\"10.1111/acel.14411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca<sup>2+</sup> homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14411\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14411\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14411","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway.
The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca2+ homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.