Wenguang Liu , Manyu Zhang , Lili Wu , Toshihisa Komori , Haoyunyan Jin , Huilin Yang , Qing Jiang , Xin Qin
{"title":"恩替诺特治疗可通过增加 Fgf23 导致小鼠低磷血症和低钙血症。","authors":"Wenguang Liu , Manyu Zhang , Lili Wu , Toshihisa Komori , Haoyunyan Jin , Huilin Yang , Qing Jiang , Xin Qin","doi":"10.1016/j.bbrc.2024.150970","DOIUrl":null,"url":null,"abstract":"<div><div>Entinostat, a class I HDACs-selective inhibitor, is currently in clinical trials for treating cancers. In some of the trials, Entinostat treatment frequently causes hypophosphatemia and/or hypocalcemia. Moreover, the effect of Entinostat treatment on bone remains incompletely understood. In this study, we found that Entinostat treatment mildly increased the trabecular but not cortical bone volume, without compromising the bone strength, the numbers of Runx2-positive cells and TRAP-positive cells, and the serum levels of P1NP and TRAP-5b. Entinostat treatment significantly reduced the level of <em>Runx2</em> mRNA but not Runx2 protein, and as a trend attenuated <em>Ctsk</em> expression. Furthermore, Entinostat treatment did not enhance MC3T3-E1 cell proliferation in vitro. These findings suggest that Entinostat increases trabecular bone volume not by regulating osteoblastogenesis or osteoclastogenesis, but possibly by attenuating the resorption capacity. Unexpectedly, Entinostat treatment increased the expression of <em>Fgf23</em>, whose protein is a hormone that regulates the serum level of phosphate (Pi). Meanwhile, Entinostat treatment increased the serum level of the active form (intact) Fgf23 and reduced that of Pi and calcium (Ca) as well. This study raised a concern about the anabolic effects of Entinostat in bone, and demonstrated that Entinostat treatment causes hypophosphatemia and hypocalcemia by upregulating <em>Fgf2</em>3 mRNA and increasing intact Fgf23 protein in serum.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"739 ","pages":"Article 150970"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entinostat treatment causes hypophosphatemia and hypocalcemia by increasing Fgf23 in mice\",\"authors\":\"Wenguang Liu , Manyu Zhang , Lili Wu , Toshihisa Komori , Haoyunyan Jin , Huilin Yang , Qing Jiang , Xin Qin\",\"doi\":\"10.1016/j.bbrc.2024.150970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Entinostat, a class I HDACs-selective inhibitor, is currently in clinical trials for treating cancers. In some of the trials, Entinostat treatment frequently causes hypophosphatemia and/or hypocalcemia. Moreover, the effect of Entinostat treatment on bone remains incompletely understood. In this study, we found that Entinostat treatment mildly increased the trabecular but not cortical bone volume, without compromising the bone strength, the numbers of Runx2-positive cells and TRAP-positive cells, and the serum levels of P1NP and TRAP-5b. Entinostat treatment significantly reduced the level of <em>Runx2</em> mRNA but not Runx2 protein, and as a trend attenuated <em>Ctsk</em> expression. Furthermore, Entinostat treatment did not enhance MC3T3-E1 cell proliferation in vitro. These findings suggest that Entinostat increases trabecular bone volume not by regulating osteoblastogenesis or osteoclastogenesis, but possibly by attenuating the resorption capacity. Unexpectedly, Entinostat treatment increased the expression of <em>Fgf23</em>, whose protein is a hormone that regulates the serum level of phosphate (Pi). Meanwhile, Entinostat treatment increased the serum level of the active form (intact) Fgf23 and reduced that of Pi and calcium (Ca) as well. This study raised a concern about the anabolic effects of Entinostat in bone, and demonstrated that Entinostat treatment causes hypophosphatemia and hypocalcemia by upregulating <em>Fgf2</em>3 mRNA and increasing intact Fgf23 protein in serum.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"739 \",\"pages\":\"Article 150970\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24015067\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24015067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Entinostat treatment causes hypophosphatemia and hypocalcemia by increasing Fgf23 in mice
Entinostat, a class I HDACs-selective inhibitor, is currently in clinical trials for treating cancers. In some of the trials, Entinostat treatment frequently causes hypophosphatemia and/or hypocalcemia. Moreover, the effect of Entinostat treatment on bone remains incompletely understood. In this study, we found that Entinostat treatment mildly increased the trabecular but not cortical bone volume, without compromising the bone strength, the numbers of Runx2-positive cells and TRAP-positive cells, and the serum levels of P1NP and TRAP-5b. Entinostat treatment significantly reduced the level of Runx2 mRNA but not Runx2 protein, and as a trend attenuated Ctsk expression. Furthermore, Entinostat treatment did not enhance MC3T3-E1 cell proliferation in vitro. These findings suggest that Entinostat increases trabecular bone volume not by regulating osteoblastogenesis or osteoclastogenesis, but possibly by attenuating the resorption capacity. Unexpectedly, Entinostat treatment increased the expression of Fgf23, whose protein is a hormone that regulates the serum level of phosphate (Pi). Meanwhile, Entinostat treatment increased the serum level of the active form (intact) Fgf23 and reduced that of Pi and calcium (Ca) as well. This study raised a concern about the anabolic effects of Entinostat in bone, and demonstrated that Entinostat treatment causes hypophosphatemia and hypocalcemia by upregulating Fgf23 mRNA and increasing intact Fgf23 protein in serum.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics