Felipe Gonzalez-Ordenes, Nicolás Herrera-Soto, Sebastián M. Muñoz, Gabriel Vallejos-Baccelliere, Sixto M. Herrera, Ignacio Aravena-Valenzuela, Andres Urrutia-Santana, Victor Castro-Fernandez, Victoria Guixé
{"title":"甲烷菌的糖原代谢:对养分供应做出代谢反应的关键途径","authors":"Felipe Gonzalez-Ordenes, Nicolás Herrera-Soto, Sebastián M. Muñoz, Gabriel Vallejos-Baccelliere, Sixto M. Herrera, Ignacio Aravena-Valenzuela, Andres Urrutia-Santana, Victor Castro-Fernandez, Victoria Guixé","doi":"10.1016/j.bbrc.2024.150978","DOIUrl":null,"url":null,"abstract":"<div><div>Methanogens, which are found exclusively in the Archaea domain of life, have the potential to help solve future energy challenges by producing methane. As a result, their metabolism has attracted significant attention in recent years. Despite being unable to grow on sugars, they store glycogen, which raises intriguing questions about the role of this polymer in methanogen metabolism and the signals that trigger its degradation when methanogenic substrates are not available.</div><div>Here, we examined genomic databases to identify the enzymes responsible for glycogen synthesis and degradation in methanogens and explored the critical role of glycogen when nutrients and methanogenic substrates are scarce. Additionally, we analyzed the metabolic pathways involved in glycogen metabolism and their connection to the various types of methanogenesis exhibited by these organisms. Potential regulatory steps are proposed based on the reported effectors. Also, by employing the Alphafold3 server, the structural location of these sites in the enzyme structure was predicted, highlighting the advantages and limitations of this tool. Analysis of the allosteric effectors involved in this regulation suggests that energy charge may be the signal that triggers the metabolic switch from gluconeogenesis and glycogen storage to glycolysis and methanogenesis.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"739 ","pages":"Article 150978"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycogen metabolism in methanogens: A key pathway for metabolic response to nutrient availability\",\"authors\":\"Felipe Gonzalez-Ordenes, Nicolás Herrera-Soto, Sebastián M. Muñoz, Gabriel Vallejos-Baccelliere, Sixto M. Herrera, Ignacio Aravena-Valenzuela, Andres Urrutia-Santana, Victor Castro-Fernandez, Victoria Guixé\",\"doi\":\"10.1016/j.bbrc.2024.150978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methanogens, which are found exclusively in the Archaea domain of life, have the potential to help solve future energy challenges by producing methane. As a result, their metabolism has attracted significant attention in recent years. Despite being unable to grow on sugars, they store glycogen, which raises intriguing questions about the role of this polymer in methanogen metabolism and the signals that trigger its degradation when methanogenic substrates are not available.</div><div>Here, we examined genomic databases to identify the enzymes responsible for glycogen synthesis and degradation in methanogens and explored the critical role of glycogen when nutrients and methanogenic substrates are scarce. Additionally, we analyzed the metabolic pathways involved in glycogen metabolism and their connection to the various types of methanogenesis exhibited by these organisms. Potential regulatory steps are proposed based on the reported effectors. Also, by employing the Alphafold3 server, the structural location of these sites in the enzyme structure was predicted, highlighting the advantages and limitations of this tool. Analysis of the allosteric effectors involved in this regulation suggests that energy charge may be the signal that triggers the metabolic switch from gluconeogenesis and glycogen storage to glycolysis and methanogenesis.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"739 \",\"pages\":\"Article 150978\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24015146\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24015146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Glycogen metabolism in methanogens: A key pathway for metabolic response to nutrient availability
Methanogens, which are found exclusively in the Archaea domain of life, have the potential to help solve future energy challenges by producing methane. As a result, their metabolism has attracted significant attention in recent years. Despite being unable to grow on sugars, they store glycogen, which raises intriguing questions about the role of this polymer in methanogen metabolism and the signals that trigger its degradation when methanogenic substrates are not available.
Here, we examined genomic databases to identify the enzymes responsible for glycogen synthesis and degradation in methanogens and explored the critical role of glycogen when nutrients and methanogenic substrates are scarce. Additionally, we analyzed the metabolic pathways involved in glycogen metabolism and their connection to the various types of methanogenesis exhibited by these organisms. Potential regulatory steps are proposed based on the reported effectors. Also, by employing the Alphafold3 server, the structural location of these sites in the enzyme structure was predicted, highlighting the advantages and limitations of this tool. Analysis of the allosteric effectors involved in this regulation suggests that energy charge may be the signal that triggers the metabolic switch from gluconeogenesis and glycogen storage to glycolysis and methanogenesis.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics