{"title":"无创记录丹利欧和大型蚤的心跳,以评估吡虫啉和草甘膦的毒性。","authors":"V.V. Krylov , T.F. Lukyanov , V.I. Korzhevina , A.S. Machikhin , A.V. Guryleva , V.K. Tchougounov , A.B. Burlakov","doi":"10.1016/j.cbpc.2024.110075","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive optical registration and subsequent analysis of heart rate (HR) and heart rate variability (HRV) in transparent aquatic animals have recently been proposed as convenient toxicological endpoints, well-suited for automation data acquisition and processing. This approach was evaluated in experiments involving juvenile <em>Daphnia magna</em> and zebrafish (<em>Danio rerio</em>) embryos exposed to glyphosate solutions (20 mg/L, 2 mg/L, 0.2 mg/L, and 0.02 mg/L) and imidacloprid solutions (30 mg/L, 3 mg/L, 0.3 mg/L, and 0.03 mg/L). The findings indicate that cardiac performance assessment is a promising approach for short-term toxicity evaluation. However, the sensitivity of this physiological endpoint to various external factors may limit its broader application. Results from the two model species highlight their differing sensitivities to the tested substances, emphasizing the need for thorough preliminary studies before establishing this method as a standardized toxicological tool. The potential development and improvement of techniques for assessing heart rate in zebrafish and daphnids are discussed.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"288 ","pages":"Article 110075"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-invasive recording of heartbeats in Danio rerio and Daphnia magna to assess the toxicity of imidacloprid and glyphosate\",\"authors\":\"V.V. Krylov , T.F. Lukyanov , V.I. Korzhevina , A.S. Machikhin , A.V. Guryleva , V.K. Tchougounov , A.B. Burlakov\",\"doi\":\"10.1016/j.cbpc.2024.110075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-invasive optical registration and subsequent analysis of heart rate (HR) and heart rate variability (HRV) in transparent aquatic animals have recently been proposed as convenient toxicological endpoints, well-suited for automation data acquisition and processing. This approach was evaluated in experiments involving juvenile <em>Daphnia magna</em> and zebrafish (<em>Danio rerio</em>) embryos exposed to glyphosate solutions (20 mg/L, 2 mg/L, 0.2 mg/L, and 0.02 mg/L) and imidacloprid solutions (30 mg/L, 3 mg/L, 0.3 mg/L, and 0.03 mg/L). The findings indicate that cardiac performance assessment is a promising approach for short-term toxicity evaluation. However, the sensitivity of this physiological endpoint to various external factors may limit its broader application. Results from the two model species highlight their differing sensitivities to the tested substances, emphasizing the need for thorough preliminary studies before establishing this method as a standardized toxicological tool. The potential development and improvement of techniques for assessing heart rate in zebrafish and daphnids are discussed.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"288 \",\"pages\":\"Article 110075\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002436\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002436","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Non-invasive recording of heartbeats in Danio rerio and Daphnia magna to assess the toxicity of imidacloprid and glyphosate
Non-invasive optical registration and subsequent analysis of heart rate (HR) and heart rate variability (HRV) in transparent aquatic animals have recently been proposed as convenient toxicological endpoints, well-suited for automation data acquisition and processing. This approach was evaluated in experiments involving juvenile Daphnia magna and zebrafish (Danio rerio) embryos exposed to glyphosate solutions (20 mg/L, 2 mg/L, 0.2 mg/L, and 0.02 mg/L) and imidacloprid solutions (30 mg/L, 3 mg/L, 0.3 mg/L, and 0.03 mg/L). The findings indicate that cardiac performance assessment is a promising approach for short-term toxicity evaluation. However, the sensitivity of this physiological endpoint to various external factors may limit its broader application. Results from the two model species highlight their differing sensitivities to the tested substances, emphasizing the need for thorough preliminary studies before establishing this method as a standardized toxicological tool. The potential development and improvement of techniques for assessing heart rate in zebrafish and daphnids are discussed.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.