基于模型的试验设计,考虑到药物动力学暴露的随机方案,用于肿瘤学剂量优化

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-11-17 DOI:10.1002/pst.2454
Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi
{"title":"基于模型的试验设计,考虑到药物动力学暴露的随机方案,用于肿瘤学剂量优化","authors":"Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi","doi":"10.1002/pst.2454","DOIUrl":null,"url":null,"abstract":"<p><p>The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology.\",\"authors\":\"Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi\",\"doi\":\"10.1002/pst.2454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2454\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2454","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

新型抗癌药物的肿瘤剂量探索试验的主要目的已经从确定最大耐受剂量转变为确定最佳剂量(OD),该剂量对后续临床试验中的受试者具有耐受性和治疗益处。2022 年,FDA 肿瘤卓越中心启动了 Optimus 项目,以改革肿瘤药物开发中的剂量优化和剂量选择模式,并发布了一份指南草案。该指南建议,剂量探索试验应包括多剂量的随机剂量反应队列,并在安全性和有效性数据之外纳入药代动力学(PK)信息,以选择OD。此外,PK 信息可以快速替代疗效数据来预测最小有效剂量并决定剂量分配。本文提出了一种基于肿瘤学 PK 结果的随机化方案的剂量优化模型试验设计。模拟研究表明,与其他设计相比,在不同的现实环境中,所提出的设计在OD选择的正确率和分配到OD的患者平均人数方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology.

The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. Subgroup Identification Based on Quantitative Objectives. A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1