揭示槲皮素对创伤性脑损伤动物的疗效和机制:一项荟萃分析和网络药理学分析。

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Metabolic brain disease Pub Date : 2024-11-13 DOI:10.1007/s11011-024-01449-x
Yawen Cai, Xiaohang Zhang, Haotian Qian, Guiqin Huang, Tianhua Yan
{"title":"揭示槲皮素对创伤性脑损伤动物的疗效和机制:一项荟萃分析和网络药理学分析。","authors":"Yawen Cai, Xiaohang Zhang, Haotian Qian, Guiqin Huang, Tianhua Yan","doi":"10.1007/s11011-024-01449-x","DOIUrl":null,"url":null,"abstract":"<p><p>Quercetin, a flavonoid and natural antioxidant derived from fruits and vegetables, has shown promising results in the improvement of traumatic brain injury (TBI). This study aims to elucidate the therapeutic role and potential mechanisms of quercetin in TBI through systematic evaluations and network pharmacology approaches. First, the meta-analysis was conducted via Review Manager 5.4 software. The meta-analysis results confirmed that quercetin could improve TBI, primarily by inhibiting inflammation, oxidative stress, and apoptosis. Subsequently, targets related to quercetin and those related to TBI were extracted from drug-related databases and disease-related databases, respectively. We found that the potential mechanism by which quercetin treats TBI is largely associated with ferroptosis, as indicated by functional analysis. Based on this, we identified 29 ferroptosis-related genes (FRGs) associated with quercetin and TBI, and then performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the DAVID database. The functional enrichment results revealed that these FRGs mainly involve the HIF-1 signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. Subsequently, we constructed a PPI network and identified the top 10 targets-HIF1A, IL6, JUN, TP53, IL1B, PTGS2, PPARG, EGFR, IFNG, and GSK3B-as hub targets. Meanwhile, molecular docking results further demonstrated that quercetin could stably bind to the top 10 hub targets. In conclusion, the above results elucidated that quercetin could effectively attenuates TBI by inhibiting inflammation, oxidative stress, and apoptosis. Notably, quercetin may also target these hub targets to regulate ferroptosis and improve TBI.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the therapeutic efficacy and mechanisms of Quercetin on traumatic brain injury animals: a meta-analysis and network pharmacology analysis.\",\"authors\":\"Yawen Cai, Xiaohang Zhang, Haotian Qian, Guiqin Huang, Tianhua Yan\",\"doi\":\"10.1007/s11011-024-01449-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quercetin, a flavonoid and natural antioxidant derived from fruits and vegetables, has shown promising results in the improvement of traumatic brain injury (TBI). This study aims to elucidate the therapeutic role and potential mechanisms of quercetin in TBI through systematic evaluations and network pharmacology approaches. First, the meta-analysis was conducted via Review Manager 5.4 software. The meta-analysis results confirmed that quercetin could improve TBI, primarily by inhibiting inflammation, oxidative stress, and apoptosis. Subsequently, targets related to quercetin and those related to TBI were extracted from drug-related databases and disease-related databases, respectively. We found that the potential mechanism by which quercetin treats TBI is largely associated with ferroptosis, as indicated by functional analysis. Based on this, we identified 29 ferroptosis-related genes (FRGs) associated with quercetin and TBI, and then performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the DAVID database. The functional enrichment results revealed that these FRGs mainly involve the HIF-1 signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. Subsequently, we constructed a PPI network and identified the top 10 targets-HIF1A, IL6, JUN, TP53, IL1B, PTGS2, PPARG, EGFR, IFNG, and GSK3B-as hub targets. Meanwhile, molecular docking results further demonstrated that quercetin could stably bind to the top 10 hub targets. In conclusion, the above results elucidated that quercetin could effectively attenuates TBI by inhibiting inflammation, oxidative stress, and apoptosis. Notably, quercetin may also target these hub targets to regulate ferroptosis and improve TBI.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-024-01449-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01449-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering the therapeutic efficacy and mechanisms of Quercetin on traumatic brain injury animals: a meta-analysis and network pharmacology analysis.

Quercetin, a flavonoid and natural antioxidant derived from fruits and vegetables, has shown promising results in the improvement of traumatic brain injury (TBI). This study aims to elucidate the therapeutic role and potential mechanisms of quercetin in TBI through systematic evaluations and network pharmacology approaches. First, the meta-analysis was conducted via Review Manager 5.4 software. The meta-analysis results confirmed that quercetin could improve TBI, primarily by inhibiting inflammation, oxidative stress, and apoptosis. Subsequently, targets related to quercetin and those related to TBI were extracted from drug-related databases and disease-related databases, respectively. We found that the potential mechanism by which quercetin treats TBI is largely associated with ferroptosis, as indicated by functional analysis. Based on this, we identified 29 ferroptosis-related genes (FRGs) associated with quercetin and TBI, and then performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the DAVID database. The functional enrichment results revealed that these FRGs mainly involve the HIF-1 signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. Subsequently, we constructed a PPI network and identified the top 10 targets-HIF1A, IL6, JUN, TP53, IL1B, PTGS2, PPARG, EGFR, IFNG, and GSK3B-as hub targets. Meanwhile, molecular docking results further demonstrated that quercetin could stably bind to the top 10 hub targets. In conclusion, the above results elucidated that quercetin could effectively attenuates TBI by inhibiting inflammation, oxidative stress, and apoptosis. Notably, quercetin may also target these hub targets to regulate ferroptosis and improve TBI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
期刊最新文献
Bushen Huoxue acupuncture ameliorates Alzheimer's disease by upregulating MARCHF3 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. The neuroprotective effects of progesterone against peripheral neuropathy: a systematic review of non-clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1