Zabrina Reyes , Mary Catherine Stovall , Sanjana Punyamurthula , Michele Longo , Demetrius Maraganore , Rebecca J. Solch-Ottaiano
{"title":"肠道微生物群和饮食对 SARS-CoV-2 感染后急性后遗症的影响。","authors":"Zabrina Reyes , Mary Catherine Stovall , Sanjana Punyamurthula , Michele Longo , Demetrius Maraganore , Rebecca J. Solch-Ottaiano","doi":"10.1016/j.jns.2024.123295","DOIUrl":null,"url":null,"abstract":"<div><div>Long COVID, also known as Post COVID-19 condition by the World Health Organization or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is defined as the development of symptoms such as post-exertional malaise, dysgeusia, and partial or full anosmia three months after initial SARS-CoV-2 infection. The multisystem effects of PASC make it difficult to distinguish from its mimickers. Further, a comprehensive evaluation of the gut microbiome, nutrition, and PASC has yet to be studied. The gut-brain axis describes bidirectional immune, neural, endocrine, and humoral modulatory interactions between the gut microbiome and brain function. We explore recent studies that support an association between alterations in gut microbiome diversity and the severity of acute-phase COVID-19, and how these may be affected by diets rich in antioxidants and fiber. The Mediterranean Diet (MeDi) has demonstrated promising neuroprotective effects through its anti-inflammatory processes. Further, diets rich in fiber increase gut diversity and increase the amount of short-chain fatty acids (SCFAs) within the body—both shown to protect from acute COVID-19 complications. Long-term changes to the gut microbiome persist after acute infection and may increase susceptibility to PASC. This study builds on existing knowledge of determinants of PASC and highlights a relationship between nutrition, gut microbiome, acute-phase COVID-19, and, subsequently, PASC susceptibility.</div></div>","PeriodicalId":17417,"journal":{"name":"Journal of the Neurological Sciences","volume":"467 ","pages":"Article 123295"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of gut microbiome and diet on post-acute sequelae of SARS-CoV-2 infection\",\"authors\":\"Zabrina Reyes , Mary Catherine Stovall , Sanjana Punyamurthula , Michele Longo , Demetrius Maraganore , Rebecca J. Solch-Ottaiano\",\"doi\":\"10.1016/j.jns.2024.123295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long COVID, also known as Post COVID-19 condition by the World Health Organization or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is defined as the development of symptoms such as post-exertional malaise, dysgeusia, and partial or full anosmia three months after initial SARS-CoV-2 infection. The multisystem effects of PASC make it difficult to distinguish from its mimickers. Further, a comprehensive evaluation of the gut microbiome, nutrition, and PASC has yet to be studied. The gut-brain axis describes bidirectional immune, neural, endocrine, and humoral modulatory interactions between the gut microbiome and brain function. We explore recent studies that support an association between alterations in gut microbiome diversity and the severity of acute-phase COVID-19, and how these may be affected by diets rich in antioxidants and fiber. The Mediterranean Diet (MeDi) has demonstrated promising neuroprotective effects through its anti-inflammatory processes. Further, diets rich in fiber increase gut diversity and increase the amount of short-chain fatty acids (SCFAs) within the body—both shown to protect from acute COVID-19 complications. Long-term changes to the gut microbiome persist after acute infection and may increase susceptibility to PASC. This study builds on existing knowledge of determinants of PASC and highlights a relationship between nutrition, gut microbiome, acute-phase COVID-19, and, subsequently, PASC susceptibility.</div></div>\",\"PeriodicalId\":17417,\"journal\":{\"name\":\"Journal of the Neurological Sciences\",\"volume\":\"467 \",\"pages\":\"Article 123295\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Neurological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022510X24004313\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Neurological Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022510X24004313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The impact of gut microbiome and diet on post-acute sequelae of SARS-CoV-2 infection
Long COVID, also known as Post COVID-19 condition by the World Health Organization or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is defined as the development of symptoms such as post-exertional malaise, dysgeusia, and partial or full anosmia three months after initial SARS-CoV-2 infection. The multisystem effects of PASC make it difficult to distinguish from its mimickers. Further, a comprehensive evaluation of the gut microbiome, nutrition, and PASC has yet to be studied. The gut-brain axis describes bidirectional immune, neural, endocrine, and humoral modulatory interactions between the gut microbiome and brain function. We explore recent studies that support an association between alterations in gut microbiome diversity and the severity of acute-phase COVID-19, and how these may be affected by diets rich in antioxidants and fiber. The Mediterranean Diet (MeDi) has demonstrated promising neuroprotective effects through its anti-inflammatory processes. Further, diets rich in fiber increase gut diversity and increase the amount of short-chain fatty acids (SCFAs) within the body—both shown to protect from acute COVID-19 complications. Long-term changes to the gut microbiome persist after acute infection and may increase susceptibility to PASC. This study builds on existing knowledge of determinants of PASC and highlights a relationship between nutrition, gut microbiome, acute-phase COVID-19, and, subsequently, PASC susceptibility.
期刊介绍:
The Journal of the Neurological Sciences provides a medium for the prompt publication of original articles in neurology and neuroscience from around the world. JNS places special emphasis on articles that: 1) provide guidance to clinicians around the world (Best Practices, Global Neurology); 2) report cutting-edge science related to neurology (Basic and Translational Sciences); 3) educate readers about relevant and practical clinical outcomes in neurology (Outcomes Research); and 4) summarize or editorialize the current state of the literature (Reviews, Commentaries, and Editorials).
JNS accepts most types of manuscripts for consideration including original research papers, short communications, reviews, book reviews, letters to the Editor, opinions and editorials. Topics considered will be from neurology-related fields that are of interest to practicing physicians around the world. Examples include neuromuscular diseases, demyelination, atrophies, dementia, neoplasms, infections, epilepsies, disturbances of consciousness, stroke and cerebral circulation, growth and development, plasticity and intermediary metabolism.