集成逃逸机制的双路径差分扰动沙猫群优化算法。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-11-01 DOI:10.1063/5.0222940
Qian Qian, Wentao Luo, Jiawen Pan, Miao Song, Yong Feng, Yingna Li
{"title":"集成逃逸机制的双路径差分扰动沙猫群优化算法。","authors":"Qian Qian, Wentao Luo, Jiawen Pan, Miao Song, Yong Feng, Yingna Li","doi":"10.1063/5.0222940","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, based on the sand cat swarm optimization (SCSO) algorithm, a dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism (EDSCSO) is proposed. EDSCSO aims to solve the problems of the original SCSO, such as the limited diversity of the population, low efficiency of solving complex functions, and ease of falling into a local optimal solution. First, an escape mechanism was proposed to balance the exploration and exploitation of the algorithm. Second, a random elite cooperative guidance strategy was used to utilize the elite population to guide the general population to improve the convergence speed of the algorithm. Finally, the dual-path differential perturbation strategy is used to continuously perturb the population using two differential variational operators to enrich population diversity. EDSCSO obtained the best average fitness for 27 of 39 test functions in the IEEE CEC2017 and IEEE CEC2019 test suites, indicating that the algorithm is an efficient and feasible solution for complex optimization problems. In addition, EDSCSO is applied to optimize the three-dimensional wireless sensor network coverage as well as the unmanned aerial vehicle path planning problem, and it provides optimal solutions for both problems. The applicability of EDSCSO in real-world optimization scenarios was verified.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism.\",\"authors\":\"Qian Qian, Wentao Luo, Jiawen Pan, Miao Song, Yong Feng, Yingna Li\",\"doi\":\"10.1063/5.0222940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, based on the sand cat swarm optimization (SCSO) algorithm, a dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism (EDSCSO) is proposed. EDSCSO aims to solve the problems of the original SCSO, such as the limited diversity of the population, low efficiency of solving complex functions, and ease of falling into a local optimal solution. First, an escape mechanism was proposed to balance the exploration and exploitation of the algorithm. Second, a random elite cooperative guidance strategy was used to utilize the elite population to guide the general population to improve the convergence speed of the algorithm. Finally, the dual-path differential perturbation strategy is used to continuously perturb the population using two differential variational operators to enrich population diversity. EDSCSO obtained the best average fitness for 27 of 39 test functions in the IEEE CEC2017 and IEEE CEC2019 test suites, indicating that the algorithm is an efficient and feasible solution for complex optimization problems. In addition, EDSCSO is applied to optimize the three-dimensional wireless sensor network coverage as well as the unmanned aerial vehicle path planning problem, and it provides optimal solutions for both problems. The applicability of EDSCSO in real-world optimization scenarios was verified.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222940\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222940","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism.

In this paper, based on the sand cat swarm optimization (SCSO) algorithm, a dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism (EDSCSO) is proposed. EDSCSO aims to solve the problems of the original SCSO, such as the limited diversity of the population, low efficiency of solving complex functions, and ease of falling into a local optimal solution. First, an escape mechanism was proposed to balance the exploration and exploitation of the algorithm. Second, a random elite cooperative guidance strategy was used to utilize the elite population to guide the general population to improve the convergence speed of the algorithm. Finally, the dual-path differential perturbation strategy is used to continuously perturb the population using two differential variational operators to enrich population diversity. EDSCSO obtained the best average fitness for 27 of 39 test functions in the IEEE CEC2017 and IEEE CEC2019 test suites, indicating that the algorithm is an efficient and feasible solution for complex optimization problems. In addition, EDSCSO is applied to optimize the three-dimensional wireless sensor network coverage as well as the unmanned aerial vehicle path planning problem, and it provides optimal solutions for both problems. The applicability of EDSCSO in real-world optimization scenarios was verified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A lightweight semi-active ankle exoskeleton utilized NiTiCu-based shape memory alloys for energy storage. Bidirectional scanning acquisition of inter-satellite laser links for space gravitational wave detection mission. Characterization of a large caliber explosively driven shock tube. Characterization of liquid-thickness distribution in micropores on elastic surface under sliding and pressurizing conditions. Controlled molecule injector for cold, dense, and pure molecular beams at the European x-ray free-electron laser.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1