{"title":"ALPK2 可预防射血分数保留型心力衰竭患者的心脏舒张功能障碍。","authors":"Tatsuya Yoshida, Satoya Yoshida, Kohei Inukai, Katsuhiro Kato, Yoshimitsu Yura, Tomoki Hattori, Kentaro Taki, Atsushi Enomoto, Koji Ohashi, Takahiro Okumura, Noriyuki Ouchi, Haruya Kawase, Nina Wettschureck, Stefan Offermanns, Toyoaki Murohara, Mikito Takefuji","doi":"10.1096/fj.202402103R","DOIUrl":null,"url":null,"abstract":"<p>Protein phosphorylation, controlled by protein kinases, is central to regulating various pathophysiological processes, including cardiac systolic function. The dysregulation of protein kinase activity plays a significant role in the pathogenesis of cardiac systolic dysfunction. While cardiac contraction mechanisms are well documented, the mechanisms underlying cardiac diastole remain elusive. This gap persists owing to the historical focus on systolic dysfunction in heart failure research. Recently, heart failure with preserved ejection fraction (HFpEF), an age-related disease characterized by cardiac diastolic dysfunction, has emerged as a major public health concern. However, its underlying mechanism remains unclear. In this study, we investigated cardiac protein kinases by analyzing the gene expression of 518 protein kinases in human tissues. We identified alpha-kinase 2 (ALPK2) as a novel cardiac-specific atypical kinase and generated tamoxifen-inducible, cardiomyocyte-specific <i>Alpk2</i>-knockout mice and <i>Alpk2</i>-overexpressing mice. <i>Alpk2</i> deficiency did not affect cardiac systolic dysfunction in the myocardial infarction model or the pressure-overload-induced heart failure model. Notably, cardiomyocyte-specific <i>Alpk2</i> deficiency exacerbated cardiac diastolic dysfunction induced by aging and in the HFpEF model. Conversely, <i>Alpk2</i> overexpression increased the phosphorylation of tropomyosin 1, a major regulator that binds myosin to actin, and mitigated cardiac stiffness in HFpEF. This study provides novel evidence that ALPK2 represents a potential therapeutic target for cardiac diastolic dysfunction in HFpEF and age-related cardiac impairments.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202402103R","citationCount":"0","resultStr":"{\"title\":\"ALPK2 prevents cardiac diastolic dysfunction in heart failure with preserved ejection fraction\",\"authors\":\"Tatsuya Yoshida, Satoya Yoshida, Kohei Inukai, Katsuhiro Kato, Yoshimitsu Yura, Tomoki Hattori, Kentaro Taki, Atsushi Enomoto, Koji Ohashi, Takahiro Okumura, Noriyuki Ouchi, Haruya Kawase, Nina Wettschureck, Stefan Offermanns, Toyoaki Murohara, Mikito Takefuji\",\"doi\":\"10.1096/fj.202402103R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein phosphorylation, controlled by protein kinases, is central to regulating various pathophysiological processes, including cardiac systolic function. The dysregulation of protein kinase activity plays a significant role in the pathogenesis of cardiac systolic dysfunction. While cardiac contraction mechanisms are well documented, the mechanisms underlying cardiac diastole remain elusive. This gap persists owing to the historical focus on systolic dysfunction in heart failure research. Recently, heart failure with preserved ejection fraction (HFpEF), an age-related disease characterized by cardiac diastolic dysfunction, has emerged as a major public health concern. However, its underlying mechanism remains unclear. In this study, we investigated cardiac protein kinases by analyzing the gene expression of 518 protein kinases in human tissues. We identified alpha-kinase 2 (ALPK2) as a novel cardiac-specific atypical kinase and generated tamoxifen-inducible, cardiomyocyte-specific <i>Alpk2</i>-knockout mice and <i>Alpk2</i>-overexpressing mice. <i>Alpk2</i> deficiency did not affect cardiac systolic dysfunction in the myocardial infarction model or the pressure-overload-induced heart failure model. Notably, cardiomyocyte-specific <i>Alpk2</i> deficiency exacerbated cardiac diastolic dysfunction induced by aging and in the HFpEF model. Conversely, <i>Alpk2</i> overexpression increased the phosphorylation of tropomyosin 1, a major regulator that binds myosin to actin, and mitigated cardiac stiffness in HFpEF. This study provides novel evidence that ALPK2 represents a potential therapeutic target for cardiac diastolic dysfunction in HFpEF and age-related cardiac impairments.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 22\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202402103R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402103R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402103R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ALPK2 prevents cardiac diastolic dysfunction in heart failure with preserved ejection fraction
Protein phosphorylation, controlled by protein kinases, is central to regulating various pathophysiological processes, including cardiac systolic function. The dysregulation of protein kinase activity plays a significant role in the pathogenesis of cardiac systolic dysfunction. While cardiac contraction mechanisms are well documented, the mechanisms underlying cardiac diastole remain elusive. This gap persists owing to the historical focus on systolic dysfunction in heart failure research. Recently, heart failure with preserved ejection fraction (HFpEF), an age-related disease characterized by cardiac diastolic dysfunction, has emerged as a major public health concern. However, its underlying mechanism remains unclear. In this study, we investigated cardiac protein kinases by analyzing the gene expression of 518 protein kinases in human tissues. We identified alpha-kinase 2 (ALPK2) as a novel cardiac-specific atypical kinase and generated tamoxifen-inducible, cardiomyocyte-specific Alpk2-knockout mice and Alpk2-overexpressing mice. Alpk2 deficiency did not affect cardiac systolic dysfunction in the myocardial infarction model or the pressure-overload-induced heart failure model. Notably, cardiomyocyte-specific Alpk2 deficiency exacerbated cardiac diastolic dysfunction induced by aging and in the HFpEF model. Conversely, Alpk2 overexpression increased the phosphorylation of tropomyosin 1, a major regulator that binds myosin to actin, and mitigated cardiac stiffness in HFpEF. This study provides novel evidence that ALPK2 represents a potential therapeutic target for cardiac diastolic dysfunction in HFpEF and age-related cardiac impairments.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.