Tianyu Feng, He Zhang, Yanjie Zhou, Yalan Zhu, Shiya Shi, Kai Li, Ping Lin, Jie Chen
{"title":"翻译后修饰在脂质代谢和癌症进展中的作用。","authors":"Tianyu Feng, He Zhang, Yanjie Zhou, Yalan Zhu, Shiya Shi, Kai Li, Ping Lin, Jie Chen","doi":"10.1186/s40364-024-00681-y","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"12 1","pages":"141"},"PeriodicalIF":9.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Roles of posttranslational modifications in lipid metabolism and cancer progression.\",\"authors\":\"Tianyu Feng, He Zhang, Yanjie Zhou, Yalan Zhu, Shiya Shi, Kai Li, Ping Lin, Jie Chen\",\"doi\":\"10.1186/s40364-024-00681-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.</p>\",\"PeriodicalId\":54225,\"journal\":{\"name\":\"Biomarker Research\",\"volume\":\"12 1\",\"pages\":\"141\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarker Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40364-024-00681-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-024-00681-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Roles of posttranslational modifications in lipid metabolism and cancer progression.
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.